Abstract:
An x-ray tube has a vacuum housing containing an electron-emitting cathode and an anode on which the electron beam, accelerated with an electrical field, is incident. The x-ray tube contains a magnet system which generates a main magnetic field with spring focus for deflecting and focusing the electron beam such that the focal spot on the incident surface of the anode can be azimuthally varied. A coil is located spatially separate from the main magnetic field and the alignment of the focal spot relative to the incident surface can be influenced therewith. The coil is fashioned and arranged such that a non-uniform magnetic field that effects a parallel alignment of the focal spot in the spring function is generated therewith.
Abstract:
A fluid-cooled x-ray tube has a closed coolant circuit in which coolant circulates for the elimination of the generated heat. In order to improve the cooling capacity, micro-capsules are added to the coolant that contain a phase-change material (PCM). The micro-capsules have a size of approximately 5 nullm through 20 nullm in diameter.
Abstract:
Disclosed is a rotary anode type X-ray tube comprising an anode target emitting an X-ray, a rotating mechanism for rotatably supporting the anode target, the rotating mechanism including an inside rotor and a stator, bearings being arranged between the inside rotor and the stator, and a vacuum envelope housing the anode target and the rotating mechanism. Dynamic slide bearings each using a liquid metal lubricant and ball bearings are used as the bearings arranged between the inside rotor and the stator.
Abstract:
A multiple row x-ray tube bearing assembly is provided, including an inner bearing member, an outer bearing member, and a free rotational intermediate race member positioned between the inner bearing member and the outer bearing member such that the inner bearing member and the outer bearing member may rotate independently of each other.
Abstract:
The invention relates to an X-ray source that is provided with a liquid metal target and an electron source (3) for the emission of an electron beam (4) through a window (23) of a duct section (51) wherethrough the liquid metal target flows in the operating condition. The X-ray source is notably characterized in that the duct section (51) is formed by a first duct segment (10, 20) that includes the window (23) and wherethrough the liquid metal target flows, and by a second duct segment (30, 40) wherethrough a cooling medium flows and which is connected to the first duct segment in such a manner that the area in which the electron beam acts on the first duct segment is cooled.
Abstract:
Geometry of a tomosynthesis system including a detector and an x-ray source is determined using fiducial markers with non-determined positions. The geometry is determined by arbitrarily identifying at least two markers within an imaged volume, at different relative distances between the detector and the x-ray source, without having projections located on a straight line for all different source positions, and locating the projections of the markers within at least two images acquired of the imaged volume. The at least two images correspond to different positions of a focal spot of the x-ray source.
Abstract:
To reduce the rotational power, an apparatus with a rotational body that is rotationally driven in a fluid-filled housing a rotational directing body is provided between the rotational body and the housing, which is rotatably supported coaxially with respect to the rotational body. The rotational directing body is configured such that in operation it rotates at an intermediate rotational frequency in comparison to the housing and the rotational body. The apparatus is particularly an X-ray radiator having a cathode and anode that are mounted in a vacuum tube in a spatially fixed manner in relation to the tube, the vacuum tube being rotationally driven as a rotational body in a coolant housing.
Abstract:
A rotating anode is mounted on a shaft of an X-ray tube by means of a ring. The ring allows expansion and reduces the hyperstatic state of the assembly. The ring has the shape of a diabolo, preferably that of a hyperboloid structure generated by revolution. The ring dampens vibration phenomena in a shaft bearing the rotating anode and reduces noise-creating phenomena.
Abstract:
An x-ray tube window cooling assembly (11) for an x-ray tube (18) includes an electron collector body (110). The electron collector body (110) is thermally coupled to an x-ray tube window (102). The electron collector body (110) may include a coolant circuit (112) with a coolant inlet (114) and a coolant outlet (122). One or more thermal exchange devices may be coupled to the x-ray tube window (102) or to the coolant circuit (112) and reduce temperature of the x-ray tube window (102).
Abstract:
An x-ray source with an x-ray source target are provided. The x-ray source includes an electron source. The x-ray source also includes an x-ray transmission window. The x-ray source also includes an x-ray source target located between the electron source and the window, wherein the target is arranged to receive electrons from the electron source to generate x-rays in the x-ray source target, and a rotational mechanism adapted to rotate the x-ray source target. A method of producing x-rays and an x-ray target are also provided.