Abstract:
An apparatus comprises a device layer structure, a device integrated into the device layer structure, an insulating carrier substrate and an insulating layer being continuously positioned between the device layer structure and the insulating carrier substrate, the insulating layer having a thickness which is less than 1/10 of a thickness of the insulating carrier substrate. An apparatus further comprises a device integrated into a device layer structure disposed on an insulating layer, a housing layer disposed on the device layer structure and housing the device, a contact providing an electrical connection between the device and a surface of the housing layer opposed to the device layer structure and a molding material surrounding the housing layer and the insulating layer, the molding material directly abutting on a surface of the insulating layer being opposed to the device layer structure.
Abstract:
A method for producing a polymer structure on a patterning region of a substrate surface includes the steps of depositing an adhesion layer having a first polymer material onto the substrate surface, patterning the adhesion layer such that the first polymer material of the adhesion layer is removed in a first region and the first polymer material of the adhesion layer remains in a second region including the patterning region, depositing a polymer layer of a second polymer material onto the substrate surface and the adhesion layer and patterning the polymer layer such that the polymer structure forms in the second region.
Abstract:
A BAW device includes a semiconductor substrate with a surface region, an insulating layer formed on the surface region and a piezoelectric layer sandwiched by a first and second electrode, wherein the second electrode is formed on the insulating layer. The surface region is performed such that a voltage dependence of a capacitance between the substrate and the second electrode is substantially suppressed.
Abstract:
Apparatus for housing a micromechanical structure, and a method for producing the housing. The apparatus has a substrate having a main side on which the micromechanical structure is formed, a photo-resist material structure surrounding the micromechanical structure to form a cavity together with the substrate between the substrate and the photo-resist material structure, wherein the cavity separates the micromechanical structure and the photo-resist material structure and has an opening, and a closure for closing the opening to close the cavity.
Abstract:
A bipolar transistor includes a first layer with a collector. A second layer has a base cutout for a base. A third layer includes a lead for the base. The third layer is formed with an emitter cutout for an emitter. An undercut is formed in the second layer adjoining the base cutout. The base is at least partially located in the undercut. In order to obtain a low transition resistance between the lead and the base, an intermediate layer is provided between the first and the second layer. The intermediate layer is selectively etchable with respect to the second layer. At least in the region of the undercut between the lead and the base, a base connection zone is provided that can be adjusted independent of other production conditions. The intermediate layer is removed in a contact region with the base.
Abstract:
A method for producing a polymer structure on a patterning region of a substrate surface includes the steps of depositing an adhesion layer having a first polymer material onto the substrate surface, patterning the adhesion layer such that the first polymer material of the adhesion layer is removed in a first region and the first polymer material of the adhesion layer remains in a second region including the patterning region, depositing a polymer layer of a second polymer material onto the substrate surface and the adhesion layer and patterning the polymer layer such that the polymer structure forms in the second region.
Abstract:
A method is provided to fabricate a bipolar transistor with a low base connection resistance, low defect density and improved scalability. Scalability is to be understood in this case as both the lateral scaling of the emitter window and the vertical scaling of the base width (low temperature budget). The temperature budget can be kept low in the base region since no implantations are required in order to reduce the base connection resistance. Furthermore, the difficulties associated with the point defects are largely avoided.
Abstract:
A vertical semiconductor transistor component is built up on a substrate by using a statistical mask. The vertical semiconductor transistor component has vertical pillar structures statistically distributed over the substrate. The vertical pillar structures are electrically connected on a base side thereof to a first common electrical contact. The vertical pillar structures include, along the vertical direction, layer zones of differing conductivity, and have insulation layers on their circumferential walls. An electrically conductive material is deposited between the pillar structures and forms a second electrical contact of the semiconductor transistor component. The pillar structures are electrically contacted to a third common electrical contact on their capping side.
Abstract:
A base body is provided, on which a first sealing ring and a second sealing ring are disposed. A substrate is disposed on the sealing rings in such a way that a cavity is formed between the first sealing ring, the second sealing ring, the base body and the substrate. An etching substance can be introduced into the cavity in order to etch clear a conductive layer that has been applied to the substrate. When a conductive layer that has been applied to the substrate back surface has been uncovered, an electrolyte can be introduced into the cavity, making contact with the conductive layer and therefore the substrate back surface.
Abstract:
In a method for generating a protective cover for a device, where a substrate is provided, which comprises the device, first, a sacrificial pattern is generated on the substrate. The sacrificial pattern covers at least an area of the substrate, which comprises the device. Then, a polymer layer is deposited, which comprises at least on sacrificial pattern. Then, an opening will be formed in the polymer layer to expose a portion of the sacrificial pattern. Then, the sacrificial pattern will be removed and the formed opening in the polymer layer is closed.