Abstract:
Multi-layer films, and processes to make the films, that enable the delivery of a substrate featuring a peelable thin layer of low haze, amorphous, isotropic film with the desired properties of high modulus, high usage temperature, UV blockage, and toughness The films are made using a co-extrusion, co-orientation and annealing process to enable the delivery of a thin isotropic, UV blocking layer on top of a release layer and support substrate. These film constructions can be kept together during additional processing steps such as coating and converting. The release and dimensionally stable substrate layer can be easily removed once processing steps are completed.
Abstract:
A method of making an optical film includes providing a film, substantially uniaxially orienting the film, and heat setting the oriented film. The film includes a polymeric material capable of developing birefringence.
Abstract:
Multi-layered solar cell devices covered with partially transmissive graphic films. The multi-layered solar cell devices include at least one solar cell, a graphics layer over the solar cell, and a reflective layer. The reflective layer can be behind the solar cell for recycling light or between the partially transmissive graphic film and the solar cell for improved appearance. The multi-layered solar cell devices have a high efficiency and a customizable appearance.
Abstract:
Assemblies comprising multi-layer optical film comprising optical layers reflecting incident UV and blue light over specified wavelength ranges. Embodiments of the multi-layer optical films are useful, for example, as a UV protective covering. An exemplary UV stable assembly comprises a multi-layer optical film comprising at least a first plurality of first and second optical layers reflecting at least 50 percent of incident UV light over at least a 30 nanometer wavelength range in a wavelength range from at least 300 nanometers to 400 nanometers, and a second plurality of first and second optical layers reflecting at least 50 percent of incident light over at least 30 nanometer wavelength in a wavelength range from at least 430 nanometers to 500 nanometers.
Abstract:
The present disclosure is directed to optical bodies including a first optical film, a second optical film and one or more strippable boundary layers disposed between the first and second optical films. Each major surface of a strippable boundary layer may be disposed adjacent to an optical film or another strippable boundary layer. At least one of the first and second optical films may include a reflective polarizer. The present disclosure is also directed to methods of processing such optical bodies.
Abstract:
Methods of protecting a substrate from light-induced degradation are described. The methods comprise providing a substrate and disposing onto the substrate a plurality of layers deposited by layer-by-layer self-assembly. At least a portion of the layers comprise an organic light absorbing compound, an organic light stabilizing compound, or a combination thereof dispersed within a polyelectrolyte. Also described are articles comprising a substrate and a plurality of layers deposited by layer-by-layer self-assembly wherein at least a portion of the layers comprise an organic light absorbing compound, an organic light stabilizing compound, or a combination thereof dispersed within a polyelectrolyte. Random copolymers suitable for use in the method and articles are also described.
Abstract:
Methods of making a multilayer optical film are described. In one embodiment, the method comprises providing a multilayer optical film and disposing onto the multilayer optical film a plurality of layers deposited by layer-by-layer self-assembly of nanoparticles, polymers, and combinations thereof. The multilayer optical film typically comprises a plurality of alternating polymeric layers of a low refractive index layer and a high refractive index layer that reflects at least one bandwidth of electromagnetic radiation ranging from ultraviolet to near infrared. Multilayer optical film articles are described comprising a plurality of layers disposed onto the multilayer optical film, wherein the plurality of layers comprises layer-by-layer self-assembled nanoparticles, polymers, and combinations thereof. The multilayer optical films are suitable for various uses including reflective polarizers for optical displays such as LCDs or LEDs, architectural film applications, window film applications, and solar power concentrating mirrors.
Abstract:
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
Abstract:
A front and back reflector are arranged to form a hollow light recycling cavity having an output region, and one or more light sources (e.g. LEDs) are disposed to emit light into the cavity. In one aspect, the back reflector has a design characterized by a first and second parameter. The first design parameter is a ratio of the collective emitting area of the light sources Aemit to the area of the output region Aout, and Aemit/Aout is preferably from 0.0001 to 0.1. The second design parameter is SEP/H, where H is the depth of the recycling cavity, and SEP is an average plan view source separation associated with the light sources. Other aspects of the disclosed extended area light sources are also described.
Abstract:
Light shielding articles are provided. Light shielding articles include a first multilayer optical film comprised of alternating first and second polymeric optical layers collectively reflecting at an incident light angle of at least one of 0°, 15°, 30°, 45°, 60°, or 75°, an average of at least 70, 80, 90, or 95 percent of incident visible light over at least a wavelength range from 400 nanometers (nm) to 700 nm. The light shielding articles further include either a second multilayer optical film or a barrier coating disposed on the first multilayer optical film. The light shielding article transmits at an incident light angle of at least one of 0°, 15°, 30°, 45°, 60°, or 75°, an average of at least 70, 80, 90, or 95 percent of incident radio frequency waves in at least one wavelength range from 1 mm to 10 mm, 10 mm to 100 mm, or 100 mm to 1000 mm. Additionally, an electromagnetic receiver and/or emitter is provided that includes a light shielding article according attached to at least a portion of the electromagnetic receiver and/or emitter.