Abstract:
Multilayer optical film reflective polarizers previously considered to have excessive off-axis color can provide adequate performance in an LC display in an “on-glass” configuration, laminated to a back absorbing polarizer of the display, without any light diffusing layer or air gap in such laminate. The reflective polarizer is a tentered-one-packet (TOP) multilayer film, having only one packet of microlayers, and oriented using a standard tenter such that birefringent microlayers in the film are biaxially birefringent. The thickness profile of optical repeat units (ORUs) in the microlayer packet is tailored to avoid excessive perceived color at normal and oblique angles. Color at high oblique angles in the white state of the display is reduced by positioning thicker ORUs closer to the absorbing polarizer, and by ensuring that, with regard to a boxcar average of the ORU thickness profile, the average slope from an ORU(600) to an ORU(645) does not exceed 1.8 times the average slope from an ORU(450) to the ORU(600).
Abstract:
A multilayer optical film including a first layer having an index of refraction n1 at a wavelength λ in a range from about 580 nm to about 650 nm, and a second layer having an index of refraction n2 at λ is described. The first and second layers define an interface therebetween comprising a two-dimensional grating. The grating may have an average height H such that |n1−n2|*H is in a range from 0.24 micrometers to 0.3 micrometers. Optical systems including the multilayer optical film are described. A subpixel in a display surface of the optical system may be diffracted into a zero diffraction order and a plurality of first diffraction orders where the intensities of the zero and first diffraction orders are with 10% of each other at λ. The optical system may have a modulation transfer function greater than 0.4 at 10 line pairs per millimeter.
Abstract:
This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
Abstract:
Variable index light extraction layers that contain a first region with a first material and a second region including a second material are described, where the first region has a lower effective index of refraction than the second region. Optical films and stacks may use the variable index light extraction layers in front lit or back lit display devices and luminaires.
Abstract:
Variable index light extraction layers that contain a first region with a first material and a second region including a second material are described, where the first region has a lower effective index of refraction than the second region. Optical films and stacks may use the variable index light extraction layers in front lit or back lit display devices and luminaires.
Abstract:
An optical construction includes a lens film having an outermost structured first major surface and an opposing outermost substantially planar second major surface. The first major surface includes a plurality of microlenses. A radiation cured optically opaque mask layer is disposed on the second major surface of the lens film. The mask layer has an average thickness of less than about 10 microns and defines a plurality of laser-ablated through openings therein. The through openings are aligned to the microlenses in a one-to-one correspondence, such that for a light incident on the structured first major surface along an incident direction forming an incident angle with the second major surface, an optical transmittance of the optical construction as a function of a transmitted angle includes a first transmitted peak having a first peak transmittance T1≥40%. The first transmitted peak can be within about 10 degrees of the incident angle.
Abstract:
An integral optical construction includes a lens layer including a structured first major surface having a plurality of microlenses. An optically opaque mask layer is disposed on the lens layer and defines a plurality of openings. Each of the openings extends from a first major surface of the mask layer facing the lens layer to an opposite second major surface of the mask layer. The openings are in a one-to-one correspondence with the microlenses. Regions of the mask layer between the openings have an optical density of greater than about 2 for at least a first visible wavelength in a visible wavelength range. An optical adhesive layer is disposed on, and makes physical contact with, the second major surface of the mask layer. The optical adhesive layer defines a recess at each of the openings. The recess includes a closed bottom and an opposite open top open to the opening.
Abstract:
An organic light emitting diode (OLED) display includes a pixelated OLED display panel and a color-correction component disposed on the pixelated OLED display panel. The pixelated OLED display panel has a ratio of blue-to-red color mixing weights at 30 degrees of β030, and a ratio of blue-to-red color mixing weights at 45 degrees of β045, where β045≥β030≥1.05 and 1.5≥β045≥1.1. The color-correction component is configured such that a ratio of blue-to-red color mixing weights at 45 degrees of the display is β45 and a ratio of blue-to-red color mixing weights at 30 degrees of the display is β30, where β045−0.1≥β45≥2.1−β045 and β030−0.05≥β30≥2.05−β030. Methods of making OLED displays are described.
Abstract:
Phase separated articles that include a matrix phase including an acrylate copolymer; and a silicone elastomer phase stably dispersed in the matrix phase are described. The matrix phase may be derived from precursors comprising from 60 to 95 parts by weight of an alkyl acrylate having an alkyl group having 1 to 14 carbon atoms. Methods of forming phase separated articles, and articles including phase separated articles are also described.
Abstract:
An optical construction includes a lens film having a plurality of optically transparent first beads at least partially embedded in a first layer. A light blocking second layer is disposed on the lens film and defines a plurality of through openings therein extending at least partially between opposite major top and bottom surfaces of the second layer. The through openings are aligned to the first beads in a one-to-one correspondence.