Abstract:
Systems and methods for performing online extracorporeal photopheresis of mononuclear cells are disclosed. Whole blood is removed from a patient and introduced through a processing set into a separation chamber to separate the desired cell population from the blood. The separated cell population is processed through the set which is associated with a treatment chamber where the cells are treated. Once treated, the cells are returned to the patient. The processing set remains connected to the patient during the entire ECP treatment procedure and provides an online, sterile closed pathway between the separation chamber and the treatment chamber.
Abstract:
A fluid processing system includes a separation device, a mononuclear cell product processing device, a pump assembly, and a controller. The controller is programmed to actuate the pump assembly to convey blood from a blood source into the separation device, actuate the separation device to separate a mononuclear cell product from the blood, and actuate the pump assembly to convey at least a portion of the mononuclear cell product through the mononuclear cell product processing device to modify a genome of at least one of the cells of the mononuclear cell product and create a modified mononuclear cell product. The controller is programmed to selectively actuate the pump system to convey the mononuclear cell product through the mononuclear cell product processing device in either a first direction or in an opposite, second direction to modify the genome of at least one of the cells of the mononuclear cell product.
Abstract:
A prismatic reflector is provided for incorporation into a centrifugal separation chamber. The prismatic reflector is formed of a light-transmissive material and includes inner and outer walls and first and second end walls. The inner wall is configured to receive light traveling along an initial path and transmit the light to the first end wall, with the first end wall receiving the light transmitted through the inner wall and directing the light toward the second end wall in a direction that is angled with respect to the initial path. The second end wall receives the light from the first end wall and transmits the light out of the prismatic reflector. The initial path of the light may be in a direction toward a rotational axis of the centrifugal separation chamber, with the prismatic reflector redirecting the light into a direction substantially parallel to the rotational axis.
Abstract:
Methods and systems for transfusing reduced-volume blood components are disclosed. Previously collected blood components are introduced into a fluid circuit associated with an apparatus that further separates the component into a reduced volume component and supernatant. The reduced-volume blood component is transfused to the patient in need of the component without the risk of circulatory overload.
Abstract:
A system and a method for collecting plasma has a separator, a donor line, an anticoagulant line, a touchscreen, and a controller. The controller controls operation of the system and receives donor parameters electronically from a donor management system. The controller uses a target volume for plasma product and/or raw plasma which is based at least in part on donor height and weight used to calculate total donor blood volume, the target volume for plasma product and/or raw plasma based on the total donor blood volume. The controller controls the system to operate at least three draw and return phases to withdraw whole blood from a donor and separate the whole blood into the plasma product and the red blood cells and to return the red blood cells to the donor
Abstract:
Systems and methods are provided for collecting a platelet product from a fluid including platelets and plasma. Platelet-rich plasma is separated from at least a portion of another constituent of the fluid and then may be further separated into concentrated platelets and platelet-poor plasma, with the concentrated platelets being resuspended. Separated platelets are conveyed through a size exclusion filter and into a platelet storage container. The size exclusion filter is configured to remove platelet clumps and/or particles larger than a platelet from the separated platelets. Subsequently, an additive is conveyed through the size exclusion filter and into the platelet storage container. Conveying additive through the size exclusion filter improves platelet recovery in the platelet product by displacement of separated platelets with the additive and may also break up any platelet clumps that are present in the size exclusion filter.
Abstract:
A system for concentrating cells, wherein a syringe comprises a lumen and an axial end comprising a port and a radial end closed to liquid flow. A plunger divides the axial and radial ends, and the syringe is configured to hold a cellular suspension. A filter disposed at the radial end is configured to maintain sterility of the syringe. A cap comprises a vent disposed at the radial end. The plunger is configured to be actuated towards the axial end by air pressure being applied into the radial end and the plunger is configured to be actuated towards the radial end by a vacuum being applied into the radial end.
Abstract:
A fluid separation device includes a centrifuge in which a fluid is separated into at least two components, with an interface therebetween. At least a portion of one of the separated fluid components is removed from the centrifuge and flows through a vessel. Light is reflected off of the separated fluid component in the vessel and received and analyzed to determine its main wavelength. If the main wavelength is higher than a maximum value, a target location of the interface is changed. If the main wavelength is less than the maximum value, then the location of the interface is compared to the target location. When the interface is sufficiently close to the target location, the optical density of the separated fluid component in the vessel is compared to a minimum value. If the optical density is less than the minimum value, the target location of the interface is changed.
Abstract:
Blood in a separation chamber is separated into a red blood cell layer, a plasma constituent, and a mononuclear cell-containing layer. A portion of the plasma constituent exits the chamber via a plasma outlet, while a first portion of the red blood cell layer exits via a red blood cell outlet. A second portion of the red blood cell layer exits the chamber via the red blood cell outlet and is collected. At least a portion of the collected red blood cell layer may then be conveyed to the chamber via the red blood cell outlet to convey at least a portion of the mononuclear cell-containing layer out of the chamber via the plasma outlet for collection. A second portion of the plasma constituent may be conveyed out of the chamber via the plasma outlet to more fully collect the mononuclear cell-containing layer without the use of collected plasma.
Abstract:
A computer-implemented method comprises providing a fluid circuit comprising fluid pathways configured to mount and associate with a durable processing device comprising a pressure sensor in communication with a controller and a fluid pathway. A container is connected to the pressure sensor and may receive a volume of fluid. A change in pressure values between a first and second time is measured from when the volume of fluid is not in communication with the pressure sensor to when the volume of fluid is in communication with the pressure sensor, the volume of fluid within the container or a presence or absence of a fluid connection to the fluid pathway based on the change in pressure values is determined, and a response action is executed if the volume of fluid within the container is not within an authorized volume range for the time period, or if a fluid connection is unauthorized.