Abstract:
A processor is described having a semiconductor chip having non volatile storage circuitry. The non volatile storage circuitry has information identifying a maximum operational frequency of the processor at which the processor's operation is guaranteed for an ambient temperature that corresponds to an extreme thermal event.
Abstract:
In one embodiment, the present invention includes a processor having a core and a power controller to control power management features of the processor. The power controller can receive an energy performance bias (EPB) value from the core and access a power-performance tuning table based on the value. Using information from the table, at least one setting of a power management feature can be updated. Other embodiments are described and claimed.
Abstract:
A single communication fabric for a data processing apparatus is provided. The fabric has an interconnection network to provide a topology of data communication channels between a plurality of data-handling functional units. The interconnection network has a first interconnection domain to provide data communication between a first subset of the data-handling functional units and a second interconnection domain to provide data communication between a second subset of the data-handling functional units. The power management circuitry is arranged to control a first performance level for the first interconnection domain independently from control of a second performance level for the second interconnection domain. Machine readable instructions and a method are provided to concurrently set performance levels of two different fabric domains to respective different operating frequencies.
Abstract:
Techniques and mechanisms for determining operation a processor core which is in a common power delivery domain with one or more other processor cores. In an embodiment, an execution of instructions by a first core of a processor module is selectively throttled based on the detection of a single violation condition. The throttling is performed while the cores of the processor module are each maintained in a current power state. The single violation condition comprises a violation of a test criteria by the first core, while the one or more other cores of the module each satisfy the test criteria. In the case of a multiple violation condition, each core of the processor module is transitioned from one power state to another power state. In another embodiment, the test criteria includes or is otherwise based on a threshold level of a dynamic capacitance for a given core.
Abstract:
A scheme is provided for a processor to measure or estimate the dynamic capacitance (Cdyn) associated with an executing application and take a proportional throttling action. Proportional throttling has significantly less impact on performance and hence presents an opportunity to get back the lost bins and proportionally clip power if it exceeds a specification threshold. The ability to infer a magnitude of power excursion of a power virus event (and hence, the real Cdyn) above a set power threshold limit enables the processor to proportionally adjust the processor operating frequency to bring it back under the limit. With this scheme, the processor distinguishes a small power excursion versus a large one and reacts proportionally, yielding better performance.
Abstract:
An adaptive or dynamic power virus control scheme (hardware and/or software) that dynamically adjusts maximum dynamic capacitance (CdynMax) and corresponding maximum frequency (P0nMax) setting per application executed on a processor core. A power management unit monitors telemetry such as a number of throttled cycles due to CdynMax threshold excursions cycles for the processor core and a cost of average cycle Cdyn cost for the processor core. As the number of throttling cycles increases for the processor core, the aCode firmware of the power management unit decides to increase the Cdyn level or threshold for that core (e.g., to make the threshold less aggressive). As the average Cdyn cost over a number of cycles becomes lower than a threshold, aCode adjusts the threshold to a lower threshold (e.g., more aggressive threshold) and lower Cdyn.
Abstract:
Apparatuses, methods and storage medium associated with current control for a multicore processor are disclosed herein. In embodiments, a multicore processor may include a plurality of analog current comparators, each analog current comparator to measure current utilization by a corresponding one of the cores of the multicore processor. The multicore processor may include one or more processors, devices, and/or circuitry to cause the cores to individually throttle based on measurements from the corresponding analog current comparators. In some embodiments, a memory device of the multicore processor may store instructions executable to operate a plurality power management agents to determine whether to send throttle requests based on a plurality of histories of the current measurements of the cores, respectively.
Abstract:
Methods and apparatuses relating to hardware processors with multiple interconnected dies are described. In one embodiment, a hardware processor includes a plurality of physically separate dies, and an interconnect to electrically couple the plurality of physically separate dies together. In another embodiment, a method to create a hardware processor includes providing a plurality of physically separate dies, and electrically coupling the plurality of physically separate dies together with an interconnect.
Abstract:
Examples herein relate to assigning, by a system agent of a central processing unit (CPU), an operating frequency to a core group based priority level of the core group while avoiding throttling of the system agent. Avoiding throttling of the system agent can include maintaining a minimum performance level of the system agent. A minimum performance level of the system agent can be based on a minimum operating frequency. Assigning, by a system agent of a central processing unit, an operating frequency to a core group based priority level of the core group while avoiding throttling of the system agent can avoid a thermal limit of the CPU. Avoiding thermal limit of the CPU can include adjusting the operating frequency to the core group to avoid performance indicators of the CPU. A performance indicator can indicate CPU utilization corresponds to Thermal Design Point (TDP).
Abstract:
An apparatus and method for intelligently scheduling threads across a plurality of logical processors. For example, one embodiment of a processor comprises: a plurality of cores to be allocated to form a first plurality of logical processors (LPs) to execute threads, wherein one or more logical processors (LPs) are to be associated with each core of the plurality of cores; scheduling guide circuitry to: monitor execution characteristics of the first plurality of LPs and the threads; generate a first plurality of LP rankings, each LP ranking including all or a subset of the plurality of LPs in a particular order; and store the first plurality of LP rankings in a memory to be provided to a scheduler, the scheduler to schedule the threads on the plurality of LPs using the first plurality of LP rankings; a power controller to execute power management code to perform power management operations including independently adjusting frequencies and/or voltages of one or more of the plurality of cores; wherein in response to a core configuration command to deactivate a first core of the plurality of cores, the power controller or privileged program code executed on the processor are to update the memory with an indication of deactivation of the first core, wherein responsive to the indication of deactivation of the first core, the scheduler is to modify the scheduling of the threads.