Abstract:
A method for manufacturing a component having an electrical through-connection is described. The method includes the following steps: providing a semiconductor substrate having a front side and a back side opposite from the front side, producing an insulating trench, which annularly surrounds a contact area, on the front side of the semiconductor substrate, filling the insulating trench with an insulating material, producing an electrical contact structure on the front side of the semiconductor substrate by depositing an electrically conductive material in the contact area, removing the semiconductor material remaining in the contact area on the back side of the semiconductor substrate in order to produce a contact hole which opens up the bottom side of the contact structure, and depositing a metallic material in the contact hole in order to electrically connect the electrical contact structure to the back side of the semiconductor substrate.
Abstract:
A method for manufacturing a micromechanical component is described in which a trench etching process and a sacrificial layer etching process are carried out to form a mass situated movably on a substrate. The movable mass has electrically isolated and mechanically coupled subsections of a functional layer. A micromechanical component having a mass situated movably on a substrate is also described.
Abstract:
A micromechanical component having a displaceable part connected to a residual substrate by at least one spring, and including first and second subunits, between which an insulating intermediate layer and at least one semiconductor boundary layer is formed; an inner region of the first subunit, which inner region is aligned with the second subunit, being patterned out of a substrate using at least one cavity etched in a first etching direction; an outer region of the first subunit of the displaceable part, which outer region faces away from the second subunit, being patterned out of the substrate using at least one hollowed-out section etched in a second etching direction; the second subunit being patterned out of a semiconductor layer deposited onto the insulating intermediate layer and/or on the at least one semiconductor boundary layer using at least one continuous separating trench. Also described is a related manufacturing method.
Abstract:
A micromechanical component is described having a substrate which has a movable mass which is connected via at least one spring to the substrate so that the movable mass is displaceable with respect to the substrate, and at least one fixedly mounted stator electrode. The movable mass and the at least one spring are structured from the substrate. At least one separating trench which at least partially surrounds the movable mass is formed in the substrate. The at least one stator electrode is situated adjacent to an outer surface of the movable mass which is at least partially surrounded by the separating trench, with the aid of at least one supporting connection which connects the at least one stator electrode to an anchor situated on the substrate and spans a section of the separating trench. Also described is a manufacturing method for a micromechanical component.
Abstract:
A method is described for creating at least one recess in a semiconductor component, in particular a micromechanical or electrical semiconductor component, having the following steps: applying at least one mask to the semiconductor component, forming at least one lattice having at least one or more lattice openings in the mask over the recess to be formed, the lattice opening or lattice openings being formed as a function of the etching rate and/or the dimensioning of the recess to be formed; forming the recess below the lattice.
Abstract:
A method for manufacturing a micromechanical structure includes: forming a first insulation layer above a substrate; forming a first micromechanical functional layer on the first insulation layer; forming multiple first trenches in the first micromechanical functional layer, which trenches extend as far as the first insulation layer; forming a second insulation layer on the first micromechanical functional layer, which second insulation layer fills up the first trenches; forming etch accesses in the second insulation layer, which etch accesses locally expose the first micromechanical functional layer; and etching the first micromechanical functional layer through the etch accesses, the filled first trenches and the first insulation layer acting as an etch stop.
Abstract:
A method for providing and connecting a first contact area to at least one second contact area on a substrate, in particular in the case of a semiconductor component, which includes providing at least one insulation layer on the substrate, forming an opening in the at least one insulation layer over at least one insulation trench of a first contact area, applying at least one metal layer to the insulation layer, forming the first and second contact areas in the at least one metal layer and at least one printed conductor between the two contact areas, and forming the insulation trench.
Abstract:
A method for manufacturing a micromechanical component is described in which a trench etching process and a sacrificial layer etching process are carried out to form a mass situated movably on a substrate. The movable mass has electrically isolated and mechanically coupled subsections of a functional layer. A micromechanical component having a mass situated movably on a substrate is also described.
Abstract:
In a method for manufacturing a micromechanical component, a cavity is produced in the substrate from an opening at the rear of a monocrystalline semiconductor substrate. The etching process used for this purpose and the monocrystalline semiconductor substrate used are controlled in such a way that a largely rectangular cavity is formed.
Abstract:
A method for establishing and closing at least one trench of a semiconductor component, in particular a micromechanical or electrical semiconductor component, having the following steps: applying at least one metal layer over the trench to be formed; forming a lattice having lattice openings in the at least one metal layer over the trench to be formed; forming the trench below the metal lattice, and closing the lattice openings over the trench.