Abstract:
Disclosed are a method for preparing a high performance BGA board and a jig applicable to the method. The method comprises pre-bonding an adhesive to a BGA board laminated structure or a heatsink by use of a jig; and main-bonding the BGA board laminated structure or the heatsink to which the adhesive is previously stuck in the pre-bonding step to the heatsink or the BGA board laminated structure, respectively, by use of a jig. A high performance BGA board can be prepared by use of an individual heatsink and a strip-type jig without a strip-type heatsink, and in which the Ni-plated side of the heatsink can be prevented from being contaminated.
Abstract:
A weak-magnetic field sensor using printed circuit board manufacturing technique and a method of manufacturing the same which detects earth magnetism to obtain positional information is disclosed. The sensor comprises a magnetic layer patterned in a certain shape; a first stacked board stacked on a lower surface of the magnetic layer and formed with a first driving pattern; a second stacked board stacked on an upper surface of the magnetic layer and formed with a second driving pattern, the first and second driving patterns being electrically connected to each other; a third lower stacked board stacked on a lower surface of the first stacked board and formed with a first pickup pattern; and a third upper stacked board stacked on an upper surface of the second stacked board and formed with a second pickup pattern, the third lower and upper stacked boards being electrically connected to each other.
Abstract:
A circuit board including: an insulator having a trench; a first circuit pattern formed to bury a portion of the trench; and a second circuit pattern formed on a surface of the insulator having the trench formed therein.
Abstract:
A circuit board includes: an insulator having a groove; a circuit layer filling a portion of the groove; a solder pad on the circuit layer filling the remainder of the groove; and a circuit pattern electrically connected with the circuit layer, the circuit pattern buried in the insulator such that a portion of the circuit pattern is exposed at a surface of the insulator.
Abstract:
A mounting substrate and a method of manufacturing the mounting substrate. The mounting substrate can include an insulation layer, a bonding pad buried in one side of the insulation layer in correspondence with a mounting position of a chip, and a circuit pattern electrically connected to the bonding pad. By utilizing certain embodiments of the invention, the process for stacking a solder resist layer can be omitted, as the bonding pads can be implemented in a form recessed from the surface of the insulation layer. In this way, the manufacturing process can be simplified and manufacturing costs can be reduced. Since the surface of the mounting-substrate on which to mount a chip can be kept flat without any protuberances, the occurrence of voids in the underfill can be minimized. This is correlated to obtaining a high degree of reliability, and leads to a greater likelihood of successful mounting.
Abstract:
A single-layer board on chip package substrate and a method of manufacturing the same are disclosed. The single-layer board on chip package substrate in accordance with an embodiment of the present invention includes an insulator, which has a window perforated therethrough, a wiring pattern, a wire bonding pad and a solder ball pad, which are embedded in one surface of the insulator, and a solder resist layer, which is formed on the one surface of the insulator such that the solder resist layer covers the wiring pattern but at least portions of the wire bonding pad and the solder ball pad are exposed.
Abstract:
Disclosed is a method of manufacturing a printed circuit board. The method of manufacturing a printed circuit board having a via for interlayer connection can include forming a circuit pattern on one side of a carrier, pressing one side of the carrier into one side of the insulator, removing the carrier, forming a hole penetrating through the insulator by processing one end of the circuit pattern, and forming a conductive material inside the hole to have the conductive material correspond to the via.
Abstract:
An electronic component package and a manufacturing method thereof. The electronic component package includes: an insulation layer; a single layer of circuit pattern buried in the insulation layer and having a surface exposed at one side of the insulation layer, the circuit pattern comprising a bonding pad and a solder ball pad; and an electronic component mounted on one side of the insulation layer and electrically connected with the bonding pad. In addition, the electronic component package includes a portion of the insulation layer being removed in correspondence with the position of the solder ball pad such that the solder ball pad is exposed at the other side of the insulation layer.
Abstract:
A printed circuit board having embedded electronic components and a manufacturing method thereof are disclosed. With the printed circuit board having embedded electronic components, including a core sheet, a first electronic component mounted on one side of the core sheet, a second electronic component mounted on the other side of the core sheet and overlapping the first electronic component, a first insulation layer stacked on one side of the core sheet and covering the first electronic component, a second insulation layer stacked on the other side of the core sheet and covering the second electronic component, and a circuit pattern formed on the surface of the first insulation layer or the second insulation layer, the density of the printed circuit board having embedded components is improved, as a plurality of electronic components are embedded simultaneously, and when a thin CCL substrate or a metal substrate is used as the core, a metal substrate in particular, the heat-releasing property and mechanical strength are improved, including increased bending strength in a thermal-stress environment, as electronic components are mounted on both sides of the core sheet.
Abstract:
An aspect of the present invention features a manufacturing method of a board on chip package. The method can comprise: (a) laminating a dry film on a carrier film, one side of which is laminated by a thin metal film; (b) patterning the dry film in accordance with a circuit wire through light exposure and developing process, and forming a solder ball pad and a circuit wire; (c) removing the dry film; (d) laminating an upper photo solder resist excluding a portion where the solder ball pad is formed; (e) etching the thin metal film formed on a portion where the upper photo solder resist is not laminated; (f) mounting a semiconductor chip on the solder ball pad by a flip chip bonding; (g) molding the semiconductor chip with a passivation material; (h) removing the carrier film and the thin metal film; and (i) laminating a lower photo solder resist under the solder ball pad. The board on chip package and the manufacturing method thereof according to the present invention can design a high density circuit since a circuit pattern is formed using a seed layer.