Abstract:
A micro sensor package having a low thermal conductivity includes: a substrate on which a metal pattern is formed; a sensing chip disposed on the substrate; a cover covering the sensing chip and formed with a hole for supplying gas to the sensing chip; and a filter covering the hole, wherein the sensing chip comprises a sensor platform having a plurality of first pores formed along the up-down direction, and a sensor electrode formed on an upper portion or a lower portion of the sensor platform and electrically connected to the metal pattern.
Abstract:
A base substrate which prevents burrs generated during the cutting process includes: multiple conductive layers stacked in one direction with respect to the base substrate; at least one insulation layer being alternately stacked with said conductive layers and electrically separating said conductive layers; and a through-hole penetrating said base substrate covering said insulation layer at the contact region where said cut surface and said insulation layer meet during the cutting of said base substrate in accordance with a predetermined region of the chip substrate. A method of manufacturing the base substrate includes alternately stacking conductive layers and insulation layers and forming a through-hole.
Abstract:
The present invention relates to a substrate for supporting an antenna pattern. The substrate includes a porous anodic oxide layer having a plurality of pores formed by anodizing metal. A metallic material is filled in at least a part of the pores.
Abstract:
A folding type capacitor includes a metal substrate wherein a through hole penetrates an inside thereof; at least one dielectric layer formed on a surface of the metal substrate and an inner peripheral surface of the through hole; and an electrode layer formed on the at least one dielectric layer, wherein the metal substrate has bending portions whose surfaces are facing each other. Thus, manufacturing process is more simplified since Al2O3 insulation layers are formed by anodizing the aluminum layer without forming the extra dielectric layers after forming the aluminum layer, so that the manufacturing cost can be reduced, and also a multi-stacked capacitor having a high capacitance and a high reliability can be provided by stacking capacitors including a plurality of aluminum oxide layers using a more simplified process.
Abstract:
A fluid permeable anodic oxide film includes a plurality of regularly-disposed pores formed by anodizing metal and a plurality of permeation holes having an inner width larger than an inner width of the pores and extending through the fluid permeable anodic oxide film. Also provided is a fluid permeable body which makes use of the fluid permeable anodic oxide film.
Abstract:
The present invention relates to a method for manufacturing an optical device, and to an optical device manufactured thereby, which involve using a substrate itself as a heat-dissipating plate, and adopting a substrate with vertical insulation layers formed thereon, such that electrode terminals do not have to be extruded out from a sealed space, and thus enabling the overall structure and manufacturing process for an optical device to be simplified.According to the present invention, a method for manufacturing a can package-type optical device comprises the steps of: (a) preparing a metal plate and a metal substrate with vertical insulation layers, wherein more than one vertical insulation layer crossing the substrate from the top surface to the bottom surface thereof are formed; (b) bonding the metal plate on the top surface of the metal substrate with vertical insulation layers; (c) forming a cavity on an intermediate product that has undergone step (b) in a form of a cylindrical pit having a predetermined depth reaching the surface of said metal substrate with vertical insulation layers by passing through said metal plate and the adhesive layers formed by said bonding, wherein said cavity contains said vertical insulation layer in the bottom wall thereof; (e) connecting a wire, which electrically connects an optical device and an electrode of the optical device together, to either side of the surface of the bottom wall of the vertical insulation layers of the cavity, respectively; and (g) sealing the cavity by means of a protective plate made from a light-transmitting material; and a can cap, formed as a picture frame whose top central portion and the bottom are open and encompassing the perimeter of the protective plate.
Abstract:
A micro heater and a micro sensor is capable of providing a heater having a small thermal capacity by forming an air gap which surrounds the heater wire, and forming the heater wire on a porous substrate.
Abstract:
The present invention relates to an optical device integrated with a driving circuit and a power supply circuit, a method for manufacturing an optical device substrate used therein, and a substrate thereof, which are capable of reducing the overall size and facilitating the handling and management thereof by mounting a plurality of optical elements, driving circuits thereof, and power supply circuits thereof on a single substrate for an optical device having a vertical insulating layer. The objective of the present invention is to provide the optical device integrated with the driving circuit and the power supply circuit, the method for manufacturing the optical device substrate used therein, and the substrate thereof which are capable of reducing the overall size and facilitating the handling and the management thereof by mounting the plurality of optical elements, the driving circuits thereof, and the power supply circuits thereof on the single substrate for the optical device having the vertical insulating layer.
Abstract:
Proposed are a laminated anodic aluminum oxide structure in which a plurality of anodic aluminum oxide films are stacked, a guide plate of a probe card using the same, and a probe card having the same. More particularly, proposed are a laminated anodic aluminum oxide structure with a high degree of surface strength, a guide plate of a probe card using the same, and a probe card having the same.
Abstract:
An optical component package includes a main substrate including a plurality of metal bodies, and a vertical insulation part provided between the metal bodies; a cavity provided in an upper surface of the main substrate; a sub-substrate provided in the cavity of the main substrate, the sub-substrate including an insulating body, a plurality of via holes vertically passing through the insulating body and filled with a metal material being electrically connected to each of the metal bodies, and a plurality of metal pads mounted on the insulating body and electrically connected to the plurality of via holes; a plurality of optical components mounted on the plurality of metal pads and electrically connected to the plurality of metal pads; and a light transmitting member provided above the main substrate.