Abstract:
A method for forming a MEMS device includes coupling a MEMS substrate and a base substrate. The MEMS substrate and the base substrate contain at least two enclosures. One enclosures has a first vertical gap between the bonding surface of the MEMS substrate and the bonding surface of the base substrate that is less than a second vertical gap between the bonding surface of the MEMS substrate and the bonding surface of the base substrate than another of the enclosures to provide a height difference between the first vertical gap and the second vertical gap. The method includes bonding the bonding surfaces of the one of the two enclosures at a first pressure to provide a first sealed enclosure. The method includes bonding the bonding surfaces of other of the two enclosures at a second pressure to provide a second sealed enclosure.
Abstract:
An embodiment of a microelectromechanical systems (MEMS) device is provided, which includes a substrate; a proof mass positioned in space above a surface of the substrate, wherein the proof mass is configured to pivot on a rotational axis parallel to the substrate; an anchor structure that includes two or more separated anchors mounted to the surface of the substrate, wherein the anchor structure is aligned with the rotational axis; and an isolation sub-frame structure that surrounds the anchor structure and is flexibly connected to each of the two or more separated anchors of the anchor structure, where the proof mass is flexibly connected to the isolation sub-frame structure.
Abstract:
A Micro-Electromechanical System (MEMS) recorder is provided. The MEMS recorder includes a scheduler, a serializer, a multiplexer, a transmit/receive switch, a master clock generator, a deserializer, a comparator array to determine whether to generate a signal to wake up a controller and/or a location module from a sleep mode, and a First-In-First-Out (FIFO) memory to output data to be stored and wake up the controller and/or the location module from the sleep mode if a signal to wake up the controller and/or the location module is received or if the FIFO memory is full, wherein the controller and/or the location module is awakened directly by the MEMS recorder or via the controller.
Abstract:
An electronic device includes a vibration element having a detection signal electrode and a drive signal electrode, an IC disposed so as to be opposed to the vibration element, a first wiring pattern located between the IC and the vibration element, and electrically connected to the drive signal electrode, and a shield wiring pattern located on the vibration element side of the first wiring pattern, and electrically connected to a constant potential (ground).
Abstract:
An electronic device includes a vibration element having a detection signal electrode and a drive signal electrode, an IC disposed so as to be opposed to the vibration element, a first wiring pattern located between the IC and the vibration element, and electrically connected to the drive signal electrode, and a shield wiring pattern located on the vibration element side of the first wiring pattern, and electrically connected to a constant potential (ground).
Abstract:
A micro electro mechanical systems (MEMS) sensor packaging includes a first wafer having a readout integrated circuit (ROIC) formed thereon, a second wafer disposed corresponding to the first wafer and having a concave portion on one side thereof and a MEMS sensor prepared on the concave portion, joint solders formed along a surrounding of the MEMS sensor and sealing the MEMS sensor jointing the first and second wafers, and pad solders formed to electrically connect the ROIC circuit of the first wafer and the MEMS sensor of the second wafer. According to the present disclosure, in joining and packaging a wafer having the ROIC formed thereon and a wafer having the MEMS sensor formed thereon, the size of a package can be reduced and an electric signal can be stably provided by forming internally pad solders for electrically connecting the ROIC and the MEMS sensor.
Abstract:
A method for manufacturing a micromechanical component and a micromechanical component. The micromechanical component includes a sensor substrate and a cap situated thereon. For creating the cap, a plurality of openings is introduced into a cap substrate in a delimited area on the surface of the front side in the form of microperforations. The openings end in the cap substrate, i.e. they do not go all the way through the cap substrate and are therefore shallow. The cap substrate is then placed on the sensor substrate, whereby the front side of the cap substrate including the plurality of openings is directed toward the sensor substrate. A portion of the cap substrate is removed from its back side by back-thinning using a grinding process or another semiconductor process. The removal of the cap substrate material from the back side creates access to the openings.
Abstract:
Microelectronic packages and methods for producing microelectronic packages are provided. In one embodiment, the method includes bonding a first Microelectromechanical Systems (MEMS) die having a first MEMS transducer structure thereon to a cap piece. The first MEMS die and cap piece are bonded such that a first hermetically-sealed cavity is formed enclosing the first MEMS transducer. A second MEMS die having a second MEMS transducer structure thereon is further bonded to one of the cap piece and the second MEMS die. The second MEMS die and the cap piece are bonded such that a second hermetically-sealed cavity is formed enclosing the second MEMS transducer. The second hermetically-sealed cavity contains a different internal pressure than does the first hermetically-sealed cavity.
Abstract:
A method for manufacturing a micromechanical device layer is performed on a device wafer comprising a single layer of homogenous material. The method comprises patterning a first mask on a first face of the device wafer, the first mask patterning at least lateral dimensions of comb structures and outlines of large device structures. First trenches are etched, the first trenches defining the lateral dimensions of the at least comb structures and outlines of large device structures in a single deep etching process. Recession etching may be used on one or two faces of the device wafer for creating structures at least partially recessed below the respective surfaces of the device wafer. A double mask etching process may be used on one or two faces of the device wafer for creating structures at least partially recessed to mutually varying depths from the respective face of the device wafer.
Abstract:
According to an embodiment, a MEMS includes a substrate; a substrate; a membrane arranged above the substrate; a first conductor with a first plane, the first conductor being connected to the membrane; and a second conductor with a second plane facing the first plane, the second conductor being arranged with a gap between the first conductor and the second conductor, wherein relative positions of the first conductor and the second conductor change in a direction in which an area of the first plane facing the second plane changes.