Abstract:
A method for creating a MEMS structure is provided. In accordance with the method, an article is provided which comprises a substrate (101) and a single crystal semiconductor layer (105), and having a sacrificial layer (103) comprising a first dielectric material which is disposed between the substrate and the semiconductor layer. An opening (107) is created which extends through the semiconductor layer (105) and the sacrificial layer (103) and which exposes a portion of the substrate (101). An anchor portion (109) comprising a second dielectric material is then formed in the opening (107). Next, the semiconductor layer (105) is epitaxially grown to a suitable device thickness, thereby forming a device layer (111).
Abstract:
The invention provides a microfabrication process which may be used to manufacture a MEMS device. In one embodiment, the process comprises depositing at least one first layer on a substrate. The process further comprises patterning said first layer to define at least a first portion of said microelectromechanical system device. The process further comprises depositing a second layer on said first layer. The process further comprises patterning said second layer using said first layer as a photomask. The process further comprises developing said second layer to define at least a second portion of the microelectromechanical system device.
Abstract:
The present invention provides a method for removing sacrificial materials in fabrications of microstructures using a selected spontaneous vapor phase chemical etchants. During the etching process, an amount of the etchant is fed into an etch chamber for removing the sacrificial material. Additional amount of the etchant are fed into the etch chamber according to a detection of an amount or an amount of an etching product so as to maintaining a substantially constant etching rate of the sacrificial materials inside the etch chamber. Accordingly, an etching system is provided for removing the sacrificial materials based on the disclosed etching method.
Abstract:
The present invention is directed to manufacturing methods of electrostatic type MEMS devices. The manufacturing method of the present invention includes the steps of forming a substrate side electrode on a substrate, forming a fluid film before or after forming a sacrificial layer, further forming a beam having a driving side electrode on a planarized surface of the fluid film, and finally, removing the sacrificial layer. Furthermore, performing the foregoing method planarizes the surface of a driving side electrode, reduces fluctuations in the shape of a beam, and improves the performance and the uniformity of the MEMS device.
Abstract:
New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electromechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap. Under certain embodiments, a clamp is disposed at each of two ends of the nanotube fabric segment and disposed over at least a portion of the nanotube fabric segment substantially at the edges defining the gap. Under certain embodiments, the clamp is made of electrically-conductive material. Under certain embodiments, the contact between the nanotube patch and the trace is a non-volatile state. Under certain embodiments, the contact between the nanotube patch and the trace is a volatile state. Under certain embodiments, the at least one electrically conductive trace has an interface material to alter the attractive force between the nanotube fabric segment and the electrically conductive trace.
Abstract:
Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric. Under certain embodiments, the nanotube article is electromechanically deflectable into contact with the conductive trace and the contact is either a volatile state or non-volatile state depending on the device construction. Under certain embodiments, the vertically oriented device is arranged into various forms of three-trace devices. Under certain embodiments, the channel may be used for multiple independent devices, or for devices that share a common electrode.
Abstract:
A method for making a pressure sensor by providing a wafer including a base silicon layer, a buried sacrificial layer, and a top silicon layer. The top silicon layer is arranged over the buried sacrificial layer and the buried sacrificial layer is arranged over the base silicon layer. Etching vents through the top silicon layer to the buried sacrificial layer and removing a portion of the buried sacrificial layer. Depositing silicon to seal the vents and arranging a strain gauge or a capacitance contact on the wafer. A method for making a pressure sensor including providing a bulk wafer and depositing a sacrificial layer on the bulk wafer. Depositing silicon on the sacrificial layer and the bulk wafer to form an encapsulation layer. Etching vents through the encapsulation layer to the sacrificial layer and removing the sacrificial layer. Closing the vents with a silicon deposition and arranging a strain gauge or a capacitance contact on the encapsulation layer. A pressure sensing device including a substrate, an encapsulation layer with vents, and voids between the substrate and the encapsulation layer. A portion of the encapsulation layer above the voids forms a membrane and deposited silicon plugs fill the vents. A strain gauge or a top capacitive contact arranged on the membrane.
Abstract:
The present invention provides an electrostatic drive type MEMS device and a manufacturing method thereof, in which flattening the surface of a driving side electrode, improving performance, and further the improvements of the degree of freedom of designing in the manufacturing process are implemented. In addition, the present invention provides a GLV device using this MEMS device, and further a laser display using this GLV device. In the present invention an electrostatic drive type MEMS device includes a substrate side electrode and a beam having a driving side electrode driven by electrostatic attraction force or electrostatic repulsion force that acts between the substrate side electrode and driving side electrode, in which the substrate side electrode is formed of an impurities-doped conductive semiconductor region in a semiconductor substrate.
Abstract:
A technique for fabricating precisely machined micro devices and micro systems that facilitates the fabrication of three-dimensional device features and reduces the need for final micro assembly. The technique includes providing a layer of base material on which the micro device/system is to be formed. The base layer optionally undergoes mechanical micro machining such as ultra-precision milling, drilling, turning, or grinding, and/or non-mechanical micro machining including lithography and etching. Next, at least one layer of structural material is deposited on the micro-machined sacrificial layer. The structural layer then optionally undergoes mechanical and/or non-mechanical micro machining. Next, any excess material of the structural layer is removed. Finally, the material of the sacrificial layer is removed to at least partially free the final micro device/system from the base layer.
Abstract:
A MEMS-based optical switch having improved characteristics and methods for manufacturing the same are provided. In accordance with one embodiment, an optical switch includes a single comb drive actuator having a deflecting beam structure and a mirror coupled to the actuator. The mirror is capable of being moved between an extended position interposed between waveguide channels and a retracted position apart from the waveguide channels. The actuator applies a force capable of deflecting the beam structure and moving the mirror to one of the extended positions or the retracted position and the beam structure returns the mirror to the other of the extended position or the retracted position in the absence of the application of force.