Method for forming a semiconductor structure through epitaxial growth
    51.
    发明授权
    Method for forming a semiconductor structure through epitaxial growth 有权
    通过外延生长形成半导体结构的方法

    公开(公告)号:US06916728B2

    公开(公告)日:2005-07-12

    申请号:US10328923

    申请日:2002-12-23

    Abstract: A method for creating a MEMS structure is provided. In accordance with the method, an article is provided which comprises a substrate (101) and a single crystal semiconductor layer (105), and having a sacrificial layer (103) comprising a first dielectric material which is disposed between the substrate and the semiconductor layer. An opening (107) is created which extends through the semiconductor layer (105) and the sacrificial layer (103) and which exposes a portion of the substrate (101). An anchor portion (109) comprising a second dielectric material is then formed in the opening (107). Next, the semiconductor layer (105) is epitaxially grown to a suitable device thickness, thereby forming a device layer (111).

    Abstract translation: 提供了一种用于产生MEMS结构的方法。 根据该方法,提供一种包括基板(101)和单晶半导体层(105)的制品,并且具有包括设置在基板和半导体层之间的第一介电材料的牺牲层(103) 。 产生一个开口(107),其延伸穿过半导体层(105)和牺牲层(103),并露出基底(101)的一部分。 然后在开口(107)中形成包括第二电介质材料的锚定部分(109)。 接下来,将半导体层(105)外延生长至合适的器件厚度,从而形成器件层(111)。

    Method for fabricating a structure for a microelectromechanical system (MEMS) device
    52.
    发明申请
    Method for fabricating a structure for a microelectromechanical system (MEMS) device 有权
    用于制造微机电系统(MEMS)装置的结构的方法

    公开(公告)号:US20050142684A1

    公开(公告)日:2005-06-30

    申请号:US10941042

    申请日:2004-09-14

    Applicant: Mark Miles

    Inventor: Mark Miles

    Abstract: The invention provides a microfabrication process which may be used to manufacture a MEMS device. In one embodiment, the process comprises depositing at least one first layer on a substrate. The process further comprises patterning said first layer to define at least a first portion of said microelectromechanical system device. The process further comprises depositing a second layer on said first layer. The process further comprises patterning said second layer using said first layer as a photomask. The process further comprises developing said second layer to define at least a second portion of the microelectromechanical system device.

    Abstract translation: 本发明提供了可用于制造MEMS装置的微细加工方法。 在一个实施例中,该方法包括在衬底上沉积至少一个第一层。 该方法还包括图案化所述第一层以限定所述微机电系统装置的至少第一部分。 该方法还包括在所述第一层上沉积第二层。 该方法还包括使用所述第一层作为光掩模来图案化所述第二层。 该方法还包括显影所述第二层以限定微机电系统装置的至少第二部分。

    Methods and apparatus of etch process control in fabrications of microstructures
    53.
    发明申请
    Methods and apparatus of etch process control in fabrications of microstructures 有权
    微观结构中蚀刻工艺控制的方法和设备

    公开(公告)号:US20050059254A1

    公开(公告)日:2005-03-17

    申请号:US10666671

    申请日:2003-09-17

    Abstract: The present invention provides a method for removing sacrificial materials in fabrications of microstructures using a selected spontaneous vapor phase chemical etchants. During the etching process, an amount of the etchant is fed into an etch chamber for removing the sacrificial material. Additional amount of the etchant are fed into the etch chamber according to a detection of an amount or an amount of an etching product so as to maintaining a substantially constant etching rate of the sacrificial materials inside the etch chamber. Accordingly, an etching system is provided for removing the sacrificial materials based on the disclosed etching method.

    Abstract translation: 本发明提供一种使用选定的自发气相化学蚀刻剂去除微结构制造中的牺牲材料的方法。 在蚀刻过程中,将一定量的蚀刻剂送入用于去除牺牲材料的蚀刻室中。 根据蚀刻产物的量或量的检测,将蚀刻剂的额外量进料到蚀刻室中,以保持蚀刻室内的牺牲材料的蚀刻速率基本上恒定。 因此,提供了基于所公开的蚀刻方法去除牺牲材料的蚀刻系统。

    MEMS element manufacturing method
    54.
    发明授权
    MEMS element manufacturing method 失效
    MEMS元件制造方法

    公开(公告)号:US06838304B2

    公开(公告)日:2005-01-04

    申请号:US10468757

    申请日:2002-12-16

    Abstract: The present invention is directed to manufacturing methods of electrostatic type MEMS devices. The manufacturing method of the present invention includes the steps of forming a substrate side electrode on a substrate, forming a fluid film before or after forming a sacrificial layer, further forming a beam having a driving side electrode on a planarized surface of the fluid film, and finally, removing the sacrificial layer. Furthermore, performing the foregoing method planarizes the surface of a driving side electrode, reduces fluctuations in the shape of a beam, and improves the performance and the uniformity of the MEMS device.

    Devices having horizontally-disposed nanofabric articles and methods of making the same
    55.
    发明申请
    Devices having horizontally-disposed nanofabric articles and methods of making the same 有权
    具有水平布置的纳米制品的装置及其制造方法

    公开(公告)号:US20040181630A1

    公开(公告)日:2004-09-16

    申请号:US10776059

    申请日:2004-02-11

    Applicant: Nantero, Inc.

    Abstract: New devices having horizontally-disposed nanofabric articles and methods of making same are described. A discrete electromechanical device includes a structure having an electrically-conductive trace. A defined patch of nanotube fabric is disposed in spaced relation to the trace; and the defined patch of nanotube fabric is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in spaced relation relative to the trace, and in the second state the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric. Under certain embodiments, the structure includes a defined gap into which the electrically conductive trace is disposed. The defined gap has a defined width, and the defined patch of nanotube fabric spans the gap and has a longitudinal extent that is slightly longer than the defined width of the gap. Under certain embodiments, a clamp is disposed at each of two ends of the nanotube fabric segment and disposed over at least a portion of the nanotube fabric segment substantially at the edges defining the gap. Under certain embodiments, the clamp is made of electrically-conductive material. Under certain embodiments, the contact between the nanotube patch and the trace is a non-volatile state. Under certain embodiments, the contact between the nanotube patch and the trace is a volatile state. Under certain embodiments, the at least one electrically conductive trace has an interface material to alter the attractive force between the nanotube fabric segment and the electrically conductive trace.

    Abstract translation: 描述了具有水平布置的纳米制品的新器件及其制造方法。 分立的机电装置包括具有导电迹线的结构。 定义的纳米管织物贴片与痕迹间隔开设置; 并且所述限定的纳米管织物片在第一和第二状态之间是机电偏转的。 在第一状态下,纳米管制品相对于迹线具有间隔的关系,并且在第二状态下,纳米管制品与痕迹接触。 低电阻信号路径与所定义的纳米片段电连通。 在某些实施例中,该结构包括限定的导电迹线设置的间隙。 限定的间隙具有限定的宽度,并且限定的纳米管织物片段跨过间隙并且具有比限定的间隙宽度稍长的纵向范围。 在某些实施例中,夹具设置在纳米管织物片段的两端中的每一个处,并且在纳米管织物片段的至少一部分上大致位于限定间隙的边缘处。 在某些实施例中,夹具由导电材料制成。 在某些实施方案中,纳米管贴片和迹线之间的接触是非挥发性状态。 在某些实施方案中,纳米管贴片和迹线之间的接触是挥发性状态。 在某些实施例中,至少一个导电迹线具有界面材料,以改变纳米管织物片段和导电迹线之间的吸引力。

    Devices having vertically-disposed nanofabric articles and methods of marking the same
    56.
    发明申请
    Devices having vertically-disposed nanofabric articles and methods of marking the same 失效
    具有垂直布置的纳米制品的装置及其标记方法

    公开(公告)号:US20040175856A1

    公开(公告)日:2004-09-09

    申请号:US10776572

    申请日:2004-02-11

    Applicant: Nantero, Inc.

    Abstract: Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric. Under certain embodiments, the nanotube article is electromechanically deflectable into contact with the conductive trace and the contact is either a volatile state or non-volatile state depending on the device construction. Under certain embodiments, the vertically oriented device is arranged into various forms of three-trace devices. Under certain embodiments, the channel may be used for multiple independent devices, or for devices that share a common electrode.

    Abstract translation: 描述了使用垂直布置的纳米制品的机电开关和存储单元及其制造方法。 机电装置包括具有主要水平表面和形成在其中的通道的结构。 通道中有导电迹线; 以及垂直悬挂在所述通道中的与所述通道的垂直壁成间隔开的纳米管制品。 该物品在水平方向上可电导向导电迹线偏转。 在某些实施方案中,纳米管制品的垂直悬浮程度由薄膜工艺限定。 在某些实施方案中,纳米管制品的垂直悬浮程度为约50纳米或更小。 在某些实施例中,纳米管制品被夹持在布置在纳米管制品的一些纳米管之间的多孔空间中的导电材料上。 在某些实施方案中,纳米管制品由多孔纳米纤维形成。 在某些实施例中,取决于器件结构,纳米管制品在机电上可偏转成与导电迹线接触,并且触点是易失性状态或非易失性状态。 在某些实施例中,垂直取向的装置被布置成各种形式的三轨迹装置。 在某些实施例中,信道可以用于多个独立设备,或者可以用于共享公共电极的设备。

    Episeal pressure sensor and method for making an episeal pressure sensor
    57.
    发明申请
    Episeal pressure sensor and method for making an episeal pressure sensor 有权
    Episeal压力传感器和制造episeal压力传感器的方法

    公开(公告)号:US20040163476A1

    公开(公告)日:2004-08-26

    申请号:US10375645

    申请日:2003-02-26

    Abstract: A method for making a pressure sensor by providing a wafer including a base silicon layer, a buried sacrificial layer, and a top silicon layer. The top silicon layer is arranged over the buried sacrificial layer and the buried sacrificial layer is arranged over the base silicon layer. Etching vents through the top silicon layer to the buried sacrificial layer and removing a portion of the buried sacrificial layer. Depositing silicon to seal the vents and arranging a strain gauge or a capacitance contact on the wafer. A method for making a pressure sensor including providing a bulk wafer and depositing a sacrificial layer on the bulk wafer. Depositing silicon on the sacrificial layer and the bulk wafer to form an encapsulation layer. Etching vents through the encapsulation layer to the sacrificial layer and removing the sacrificial layer. Closing the vents with a silicon deposition and arranging a strain gauge or a capacitance contact on the encapsulation layer. A pressure sensing device including a substrate, an encapsulation layer with vents, and voids between the substrate and the encapsulation layer. A portion of the encapsulation layer above the voids forms a membrane and deposited silicon plugs fill the vents. A strain gauge or a top capacitive contact arranged on the membrane.

    Abstract translation: 一种通过提供包括基底硅层,掩埋牺牲层和顶部硅层的晶片来制造压力传感器的方法。 顶层硅层布置在掩埋牺牲层上方,掩埋牺牲层布置在基底硅层上。 蚀刻通孔通过顶部硅层到掩埋牺牲层并去除一部分掩埋牺牲层。 沉积硅以密封通风口并在晶片上布置应变计或电容接触。 一种用于制造压力传感器的方法,包括提供体晶片并在体晶片上沉积牺牲层。 在牺牲层和体晶片上沉积硅以形成封装层。 蚀刻通过封装层到达牺牲层并去除牺牲层。 用硅沉积封闭通风口,并在封装层上布置应变计或电容接触。 一种压力感测装置,包括基底,通气孔的封装层以及基底和封装层之间的空隙。 空隙之上的封装层的一部分形成膜并且沉积的硅塞填充通风口。 布置在膜上的应变计或顶部电容接触。

    Electrostatic drive type mems element, manufacturing method thereof, optical mems element, optical modulation element, glv device, and laser display
    58.
    发明申请
    Electrostatic drive type mems element, manufacturing method thereof, optical mems element, optical modulation element, glv device, and laser display 失效
    静电驱动型元件,其制造方法,光学元件元件,光调制元件,glv器件和激光显示器

    公开(公告)号:US20040076008A1

    公开(公告)日:2004-04-22

    申请号:US10468873

    申请日:2003-08-25

    Inventor: Koichi Ikeda

    Abstract: The present invention provides an electrostatic drive type MEMS device and a manufacturing method thereof, in which flattening the surface of a driving side electrode, improving performance, and further the improvements of the degree of freedom of designing in the manufacturing process are implemented. In addition, the present invention provides a GLV device using this MEMS device, and further a laser display using this GLV device. In the present invention an electrostatic drive type MEMS device includes a substrate side electrode and a beam having a driving side electrode driven by electrostatic attraction force or electrostatic repulsion force that acts between the substrate side electrode and driving side electrode, in which the substrate side electrode is formed of an impurities-doped conductive semiconductor region in a semiconductor substrate.

    Abstract translation: 本发明提供了一种静电驱动型MEMS器件及其制造方法,其中使驱动侧电极的表面变平,提高性能,并进一步提高制造工艺中的设计自由度。 此外,本发明提供了一种使用该MEMS器件的GLV器件,还提供了使用该GLV器件的激光显示器。 在本发明中,静电驱动型MEMS器件包括基板侧电极和具有由基板侧电极和驱动侧电极之间作用的静电吸引力或静电排斥力驱动的驱动侧电极的光束,其中基板侧电极 由半导体衬底中的杂质掺杂导电半导体区形成。

    Method of manufacturing ultra-precise, self-assembled micro systems
    59.
    发明申请
    Method of manufacturing ultra-precise, self-assembled micro systems 审中-公开
    制造超精密,自组装微系统的方法

    公开(公告)号:US20040026366A1

    公开(公告)日:2004-02-12

    申请号:US10432768

    申请日:2003-05-28

    CPC classification number: B44C1/22 B81B2201/033 B81C1/00007 B81C2201/0109

    Abstract: A technique for fabricating precisely machined micro devices and micro systems that facilitates the fabrication of three-dimensional device features and reduces the need for final micro assembly. The technique includes providing a layer of base material on which the micro device/system is to be formed. The base layer optionally undergoes mechanical micro machining such as ultra-precision milling, drilling, turning, or grinding, and/or non-mechanical micro machining including lithography and etching. Next, at least one layer of structural material is deposited on the micro-machined sacrificial layer. The structural layer then optionally undergoes mechanical and/or non-mechanical micro machining. Next, any excess material of the structural layer is removed. Finally, the material of the sacrificial layer is removed to at least partially free the final micro device/system from the base layer.

    Abstract translation: 一种用于制造精密加工的微器件和微系统的技术,其有助于制造三维器件特征并减少对最终微组装的需要。 该技术包括提供要在其上形成微器件/系统的基底层。 基层任选地进行机械微加工,例如超精密铣削,钻孔,车削或磨削,和/或非机械微加工,包括光刻和蚀刻。 接下来,在微加工的牺牲层上沉积至少一层结构材料。 结构层然后任选地进行机械和/或非机械微加工。 接下来,除去结构层的任何多余的材料。 最后,去除牺牲层的材料以至少部分地从基底层释放最终的微器件/系统。

    Microelectromechanical optical switch and method of manufacture thereof
    60.
    发明授权
    Microelectromechanical optical switch and method of manufacture thereof 失效
    微机电光开关及其制造方法

    公开(公告)号:US06682871B2

    公开(公告)日:2004-01-27

    申请号:US09789887

    申请日:2001-02-21

    Applicant: Nan Zhang

    Inventor: Nan Zhang

    Abstract: A MEMS-based optical switch having improved characteristics and methods for manufacturing the same are provided. In accordance with one embodiment, an optical switch includes a single comb drive actuator having a deflecting beam structure and a mirror coupled to the actuator. The mirror is capable of being moved between an extended position interposed between waveguide channels and a retracted position apart from the waveguide channels. The actuator applies a force capable of deflecting the beam structure and moving the mirror to one of the extended positions or the retracted position and the beam structure returns the mirror to the other of the extended position or the retracted position in the absence of the application of force.

    Abstract translation: 提供了具有改进的特性的MEMS基光开关及其制造方法。 根据一个实施例,光学开关包括具有偏转梁结构的单个梳状驱动致动器和耦合到致动器的反射镜。 镜子能够在介于波导通道之间的延伸位置与离开波导通道的缩回位置之间移动。 致动器施加能够使梁结构偏转并且将反射镜移动到延伸位置或缩回位置中的一个的力,并且梁结构在没有应用的情况下将反射镜返回到延伸位置或缩回位置中的另一个 力。

Patent Agency Ranking