Abstract:
The present invention relates to a method for producing a resin composition foam comprising dissolving a supercritical fluid in a resin composition containing polytetrafluoroethylene and another resin other than polytetrafluoroethylene at a temperature equal to or higher than a glass transition point of the other resin, then foaming the resin composition by removing the supercritical fluid at a temperature lower than a temperature obtained by adding 15° C. to a thermal deformation starting temperature of the other resin, and subsequently cooling. In addition, the present invention relates to a resin composition foam, wherein the resin composition foam has a pore size of less than 50 μm, and the resin composition foam is any one of an open cell, a closed cell and a monolith type.
Abstract:
Porous organic polymeric films having multiple discrete cavities can be prepared using an water-in-oil emulsion that includes a cavity stabilizing hydrocolloid on the inner walls of the multiple discrete cavities. The multiple discrete cavities can also include organic catalytic materials for various catalytic reactions, markers materials for security applications, or the multiple discrete cavities can be used to increase opacity, hydrophobicity, or other desirable properties compared to nonporous organic polymeric films composed of the composition and dry thickness.
Abstract:
The present invention relates to a process for the production of a multi-layered material having anisotropic pores. It further relates to a multi-layered material which can be produced by the process according to the invention, and to the use of a multi-layered material as a chondral support matrix, a meniscus support matrix or an intervertebral disc support matrix.
Abstract:
The present invention relates to a process for producing pulverulent organic porous materials, comprising (i) the provision of an organic xerogel or organic aerogel and then (ii) the comminution of the material provided in step (i).The invention further relates to the pulverulent organic porous materials thus obtainable, to thermal insulation materials comprising the pulverulent porous organic materials, to building material and vacuum insulation panels comprising the thermal insulation materials, and to the use of the pulverulent organic porous materials or of the thermal insulation materials for thermal insulation.
Abstract:
Crosslinked organic polymeric porous particles have a crosslinked organic solid phase and discrete pores dispersed within the crosslinked solid phase which pores are isolated from each other. These porous particles are prepared using one or more water-in-oil emulsions containing a polyfunctional reactive compound, a reagent that causes crosslinking, optionally an ethylenically unsaturated polymerizable monomer, and optionally an organic solvent, and can include various marker materials.
Abstract:
Porous particles are prepared using a first water-in-oil emulsion comprising a first marker material in a first aqueous phase that is dispersed in a first oil phase containing a polymer and a first organic solvent, and a second water-in-oil emulsion comprising a second marker material in a second aqueous phase that is dispersed in a second oil phase. The first and second marker materials are detectably different. The two water-in-oil emulsions can be used to form a third water-in-oil emulsion containing distinct droplets of the first and second aqueous phases. This third water-in-oil emulsion is dispersed in a third aqueous phase containing a surface stabilizing agent to form a water-in-oil-in-water emulsion containing droplets of the third water-in-oil emulsion. The organic solvents are removed from the water-in-oil-in-water emulsion to form porous particles comprising first and second discrete pores that are isolated from each other. The first marker material is present within the first discrete pores, and the second marker material is present within the second discrete pores.
Abstract:
A method is provided for fabricating a porous elastomer, the method comprising the steps of: providing a predetermined amount of a liquid elastomer and a predetermined amount of a porogen; mixing the liquid elastomer and the porogen in vacuum until a homogenous emulsion without phase separation is formed; curing the homogenous emulsion until polymerizations of the emulsion is reached, thereby forming a cured emulsion; and removing the porogen from the cured emulsion. The method can advantageously be used for forming biocompatible porous elastomers and biocompatible porous membranes.
Abstract:
The invention discloses methods for making foams by photopolymerizing emulsions comprising a reactive phase and a phase immiscible with the reactive phase components. Foams made from water-in-oil emulsions, including high internal phase emulsion are disclosed. Articles and uses for the foams are also described.
Abstract:
Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.
Abstract:
This application relates to flexible, microporous, open-celled polymeric foam materials with physical characteristics that make them suitble for a variety of uses. This application particularly relates to degassing the components of the high internal phase emulsions which are subsequently cured to form such foams.