Abstract:
A pattern detection method and apparatus thereof for inspecting with high resolution a micro fine defect of a pattern on an inspected object and a semiconductor substrate manufacturing method and system for manufacturing semiconductor substrates such as semiconductor wafers with a high yield. A micro fine pattern on the inspected object is inspected by irradiating an annular-looped illumination through an objective lens onto a wafer mounted on a stage, the wafer having micro fine patterns thereon. The illumination light may be circularly or elliptically polarized and controlled according to an image detected on the pupil of the objective lens and image signals are obtained by detecting a reflected light from the wafer. The image signals are compared with reference image signals and a part of the pattern showing inconsistency is detected as a defect so that simultaneously, a micro fine defect or defects on the micro fine pattern are detected with high resolution. Further, process conditions of a manufacturing line are controlled by analyzing a cause of defect and a factor of defect which occurs on the pattern.
Abstract:
An apparatus for imaging an array of a plurality of features associated with a sample tile. The apparatus can comprise a stage that supports the sample tile in an illumination region, and an illumination source having a plurality of LEDs adapted to emit light. At least a portion of the light can illuminate the illumination region. Additionally, the apparatus can comprise an image collecting device adapted to selectively collect images of either a first signal when the illumination source is illuminating the illumination region, or a second signal absent illumination of the illumination region. The first signal can have wavelengths effectively different from the wavelengths of the portion of the light emitted by the LEDs that illuminates the illumination region.
Abstract:
A method and apparatus for genomic or proteomic research to visualize fluorescent-labeled DNA, RNA or protein samples that have been separated for documentation and analysis. The apparatus includes a novel radiation source for uniformly irradiating the samples which comprises a grid constructed from a continuous, serpentine-shaped ultraviolet light producing tube that is strategically formed to provide a multiplicity of side-by-side, immediately adjacent irradiating segments. In one form of the invention the apparatus also includes a first conversion plate that is carried by the housing at a location intermediate the radiation source and the sample-supporting platform for converting the radiation emitted from the source to radiation at a second wavelength.
Abstract:
A method and apparatus for genomic or proteomic research to visualize fluorescent labeled DNA, RNA or protein samples that have been separated for documentation and analysis. The apparatus includes a novel radiation source for uniformly irradiating the samples which comprises a grid constructed from a continuous, serpentine shaped ultraviolet light producing tube that is strategically formed to provide a multiplicity of side-by-side, immediately adjacent irradiating segments. In one form of the invention the apparatus also includes a first conversion plate that is carried by the housing at a location intermediate the radiation source and the sample supporting platform for converting the radiation emitted from the source to radiation at a second wavelength.
Abstract:
A method and apparatus for genomic or proteomic research to visualize fluorescent labeled DNA, RNA or protein samples that have been separated for documentation and analysis. The apparatus includes a novel radiation source for uniformly irradiating the samples which comprises a grid constructed from a continuous, serpentine shaped ultraviolet light producing tube that is strategically formed to provide a multiplicity of side-by-side, immediately adjacent irradiating segments. In one form of the invention the apparatus also includes a first conversion plate that is carried by the housing at a location intermediate the radiation source and the sample supporting platform for converting the radiation emitted from the source to radiation at a second wavelength.
Abstract:
Optical methods for evaluating various surface and physical optical properties of structures made wholly or partially from fibers, polymers, films or a combination thereof. Such methods are comprised of special illumination, special software algorithms and controls that provide a unique solution for evaluating such properties as fiber orientation distribution function, basis weight uniformity, fuzz and pilling, texture, and other physical and surface properties.
Abstract:
The present invention provides an improved system for identifying defects in a composite structure by providing a light source such that defects, and in particular dark defects on a dark background and/or light defects on a light background, can be identified by capturing images of the illuminated composite structure. In particular, the improved system for identifying defects in a composite structure may provide a reflective surface, dispersion elements, and multiple and/or moveable light source(s) and/or camera(s) in order to ensure that the most accurate images of any area of the composite structure, even curved or contoured areas, are captured and processed. As a result, the system of the present invention permits the operator to quickly identify and correct defects which would otherwise create structural flaws or inconsistencies that may affect the integrity of the composite structure.
Abstract:
A first set of data characterizing a spectrum of light emitted or reflected by an object is received from a linear light sensor. Each pixel of the linear light sensor corresponds to a specified range of light frequencies. The data includes a first intensity of each pixel at a first sample rate. A subset of pixels is classified as points of interest within the first set of data. A second sample rate of each pixel is determined for each of the subset of pixels. A second set of data characterizing the spectrum of the light is retrieved. The second set of data includes a second intensity of each of the subset of pixels at the second sample rate. The first set of data and the second set of data are combined to produce a third set of data characterizing the spectrum.
Abstract:
An apparatus for detecting surface defects in objects comprises one or more illuminating devices configured to emit at least a light radiation and illuminate an object to be inspected. The detection apparatus is further configured to measure the light radiation received by the object, and also comprises one or more image acquisition devices configured to acquire one or more images of the object, when illuminated by the illuminating device, and a data processor configured to process the images acquired by the image acquisition device and provide detection data indicative of the presence of surface defects on the object.
Abstract:
An optical measuring system for determining a measured variable in a medium includes a light source and a container with medium. The light source radiates measuring light into the container on a first light path, wherein the measuring light is converted into reception light as a function of the measured variable and radiates reference light past the container on a second light path. A diffusion disk is arranged between the container and a receiver, wherein the diffusion disk is configured and arranged such that the reception light impinges on the receiver through the diffusion disk. The diffusion disk is configured such that the reference light impinges on the receiver through the diffusion disk. The receiver receives the reception light and the reference light, and a data processing unit connected to the light source and to the receiver determines the measured variable from the measuring light and the reception light.