Abstract:
The present invention relates to a method for measuring the near-field signal of a sample in a scattering type near-field microscope and to a device for conducting said method.
Abstract:
Sensitivity is increased by enhancing the fluorescence collection efficiency while suppressing the increase in size of an objective lens. An objective lens 17 is structured to have a convex lens part 26 in a center portion and to have a truncated conical cylindrical body 27 around the convex lens part 26. Therefore, a fluorescence component b having too wide an emission angle to fit in the convex lens part 26, of fluorescence emitted from a sample 16, can be collected by total reflection on an outer peripheral surface 27b of the cylindrical body 27. Thus, even light having too wide an emission angle to be collected by a normal convex lens can be collected. As a result, it is possible to suppress the increase in size of the objective lens, to enhance the fluorescence collection efficiency, and to prevent the S/N ratio from being decreased by the existence of undetected fluorescence that is blocked by a prism 20. This can realize a fluorescence information reading device having high sensitivity.
Abstract:
The performance of scanning systems can be significantly enhanced by replacing the traditional power track with preferably just two wires or transmission channels for effecting communication between (i) the sensors on the mobile carriage of the scanning system and (ii) the controls, power sources, and related devices that are typically located in a compartment or module which is a significant distance away. This can be implemented by employing selected multiplexer and complementary de-multiplexer combinations in the scanner head and in the module. This technique reduces EMI noise, power loss, drag on the moving scanner heads carrying the sensors, and cost of construction.
Abstract:
A spectrophotometric scanner suitable for producing spectral reflectance images of surfaces of samples for a plurality of wavelength bands is disclosed. The spectrophotometric scanner comprises a scanner head for collecting spectral reflectance data, a positioning mechanism for positioning the scanner head in relation to a surface, and a computing device for controlling the mechanism and recording and analyzing the spectral reflectance data. The computing device directs the positioning mechanism to position the scanner head on a row of locations in a grid of locations of the surface; directs the scanner head to measure spectral reflectance data for each location in the row of locations; records and analyzes the spectral reflectance data; and produces spectral reflectance images from the spectral reflectance data. A light source in the scanner head comprises a plurality of sequentially controllable LEDs, each producing light in a different wavelength band.
Abstract:
A gloss sensor for optically measuring the gloss of a moving surface includes a housing having an exterior surface which is generally parallel with the moving surface. A light source is carried by the housing and configured for emitting a source beam of light. At least one light detector is carried by the housing. An optical prism is mounted to the housing at the exterior surface. The prism is configured to split the source beam into a reference beam which is reflected by the prism internally within the housing to the one or more light detectors, and a measurement beam which passes through the prism and is reflected by the moving surface to the one or more light detectors.
Abstract:
Translational motion of a scanning head relative to a planar target, or vice versa, is achieved by a belt and pulley system with a counterweight that is also driven by a belt and pulley system at the same speed but in the opposite direction as the scanning head. The components and belt and pulley system are oriented such that all moving components remain on one side of the target and remain so during their entire range of movement.
Abstract:
A compact optical module for fluorescence excitation and detection and methods for using same are disclosed. An apparatus for detecting fluorescence includes a substrate base, a detector adjacent to the substrate base for determining the amount of fluorescence, an emission filter adjacent to the detector, a light source for emitting an excitation light, the light source engaging the emission filter, and a cover formed over the detector, the emission filter, and the light source.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. The device further includes a heating element for heating one or more process chambers on the disk. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
An optical detection and orientation device is provided comprising housing having an excitation light source. an optical element for reflecting the excitation light to an aspherical lens and transmitting light emitted by a fluorophore excited by said excitation light, a focussing lens for focusing the emitted light onto the entry of an optical fiber, which serves as a confocal aperture, and means for accurately moving said housing over a small area in relation to a channel in a microfluidic device. The optical detection and orientation device finds use in identifying the center of the channel and detecting fluorophores in the channel during operations involving fluorescent signals.
Abstract:
A photoelectric measuring head for the contactless scanning of measurement regions, particularly of measurement fields on a printing sheet resting flat. The measuring head having outlet orifices for compressed air on its underside to generated an air cushion between the measuring head and the printing sheet. A measuring head of this kind, suspended on an air cushion provides for high stability, and the least possible distance from the base. This is achieved in that the outlet orifice for the compressed air are formed from a plate which, by virtue of a microporous structure, is air-permeable.