Abstract:
A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial command; transmitted from the network data bridge.
Abstract:
A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
Abstract:
A method and/or computer program product controls operations of a robotic device. A robotic device receives a first signal from a positioning hardware device that is worn by a user. The first signal describes a relative location between the user and the robotic device. A second signal describes an angle between the user and the robotic device and between the user and the user-selected object. Based on the first signal, the second signal, and a record of object positions of objects within a predefined area of the user, the identification and location of the user-selected object is determined. A determination is made regarding whether or not the robotic device is authorized to perform a specific task on the user-selected object based on the location of the user-selected object. If authorized, the robotic device performs the specific task on the user-selected object.
Abstract:
A system can include: a street sweeper configured to clean a street, the street sweeper including: a meter module to detect a consumption of water by the street sweeper, wherein the meter module is programmed to quantify an amount of water used by the street sweeper and to send the amount of water to a central server; and a street surface deviation detection device coupled to the street sweeper, the street surface deviation detection device being configured to measure changes in a surface of the street and send the changes to the central server; and the central server programmed to receive the amount of water.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
A robot bumper including a bumper body having a forward surface and a top surface angling away from the forward surface. The bumper body conforms to a shape of a received robot chassis. The robot bumper also includes a force absorbing layer disposed on the bumper body, a membrane switch layer comprising a plurality of electrical contacts arranged along the top surface of the bumper body, and a force transmission layer disposed between the force absorbing layer and the membrane switch layer. The force transmission layer includes a plurality of force transmitting elements configured to transmit force to the membrane switch layer.
Abstract:
A robot cleaner is provided that includes a driver configured to move the robot cleaner, and a suction unit configured to suck foreign objects from a surface below the robot cleaner. The robot cleaner also includes a detector configured to capture images of regions disposed in front of the robot cleaner. The robot cleaner further includes a controller configured to control the detector to capture a first image of a region before cleaning, control the detector to capture a second image of the region after cleaning, and generate cleaning result information using the first and second images.
Abstract:
Disclosed are a robot cleaner and a method for controlling the same, capable of controlling a travelling or cleaning pattern of a robot cleaner in accordance with extension and retraction operations of an auxiliary cleaning tool to perform an efficient cleaning operation. The robot cleaner includes a plurality of auxiliary cleaning units mounted to a bottom of the robot cleaner such that the auxiliary cleaning units are extendable and retractable, and a control unit to extend the auxiliary cleaning units while travelling in a wall tracing manner along the periphery of the cleaning region and/or when an obstacle is sensed, and to retract the auxiliary cleaning units while the robot cleaner travels in an inner portion of the cleaning region when traveling of the periphery of the cleaning region is finished.
Abstract:
A navigational control system for an autonomous robot includes a transmitter subsystem having a stationary emitter for emitting at least one signal. An autonomous robot operating within a working area utilizes a receiving subsystem to detect the emitted signal. The receiver subsystem has a receiver for detecting the emitted signal emitted by the emitter and a processor for determining a relative location of the robot within the working area upon the receiver detecting the signal.
Abstract:
An autonomous mobile robot system for bounded areas including a navigation beacon and an autonomous coverage robot. The navigation beacon has a gateway beacon emitter arranged to transmit a gateway marking emission with the navigation beacon disposed within a gateway between the first bounded area and an adjacent second bounded area. The autonomous coverage robot includes a beacon emission sensor responsive to the beacon emission, and a drive system configured to maneuver the robot about the first bounded area in a cleaning mode in which the robot is redirected in response to detecting the gateway marking emission. The drive system is also configured to maneuver the robot through the gateway into the second bounded area in a migration mode.