Abstract:
A chassis and associated telecommunication circuit card are disclosed. The chassis has heat dissipation and flame containment features while accommodating a high density of the circuitry cards. Embodiments include an inner housing with a double-layer middle floor dividing the chassis into top and bottom chambers. Each layer has partially aligned slots, and an air gap is provided between the two layers. Embodiments also include a double-layer mesh cover with an air gap existing between the two mesh layers. Projections and grooves are provided on the inner surfaces of the inner housing to receive circuit cards having a guide on one edge and a fin on another. The circuit card includes conductor structures such as multiple board layers with paired and segregated conductors. The circuit card also includes some components positioned to cooperate with the ventilation features of the chassis and includes some components chosen for low-power consumption or reduced flammability.
Abstract:
A chassis and associated telecommunication circuit card are disclosed. The chassis has heat dissipation and flame containment features while accommodating a high density of the circuitry cards. Embodiments include an inner housing with a double-layer middle floor dividing the chassis into top and bottom chambers. Each layer has partially aligned slots, and an air gap is provided between the two layers. Embodiments also include a double-layer mesh cover with an air gap existing between the two mesh layers. Projections and grooves are provided on the inner surfaces of the inner housing to receive circuit cards having a guide on one edge and a fin on another. The guide includes an opening that at least partially aligns with slots on the adjacent surface of the inner housing. The circuit card includes a finger extending from a faceplate that facilitates insertion and removal of the circuit card relative to the chassis.
Abstract:
A subassembly includes a plurality of card guides formed to receive card assemblies and also to conduct air for cooling purposes to improve cooling of components on the card guide. The card guides are particularly formed to place the cards in a location to facilitate airflow and to more evenly distribute the airflow. The invention further includes a method for designing the card guides to achieve the stated functionality. The method of designing the card guides includes determining a first and a second volume of space that is desired in relation to the amount of expected heat that is to be generated within the first and second volumes of space.
Abstract:
An apparatus for containing objects, such as electronic circuit cards, and a method for making the same, the apparatus having a housing; at least one case disposed within the housing, the case adapted to confine the objects to different locations within the housing and comprising a frame, the region within the frame divided into two regions by a first partition, each of the two regions divided into a plurality of sections by a plurality of second partitions, each of the second partitions thermally coupled to the frame and the first partition, each of the sections divided into a plurality of slots, each slot having an object disposed therein for thermal contact between the first partition, a second partition, and one of a second partition and the frame; and at least one heat sink adapted to absorb heat from the case, the heat sink thermally coupled to the case and the housing.
Abstract:
A rack element for mounting electronic equipment thereon, including: a front portion, a rear portion, and a pair of side portions defining an interior of the rack element therebetween. The interior of the rack element is partitioned into a front section and rear section, wherein the front section defines an air duct and the rear section defines a power distribution section. The air duct has an opening at one end thereof for receiving cooling air from an air conditioning system, and the front portion of the rack element includes a plurality of openings therein for enabling the cooling air from the duct to exit therethrough for cooling equipment mounted therein. The power distribution section includes an opening at one end thereof for enabling power cables to enter the power distribution section for powering equipment when mounted on the rack element.
Abstract:
A rack contains a number of shelves arranged on top of each other, which carry, among other things, board magazines with printed circuit boards. An apparatus for cooling the aforesaid printed circuit boards containing telecommunications or electronic equipment in each rack is based on the principle that one or more shelves in the rack are integrated each with its own heat exchanger, which is equipped with cooling flanges and at least one tubular coil. The heat exchanger is connected to a cooler for a coolant. The heat exchanger covers the greater part of the horizontal plane of the shelf. Heat-transfer members with extensive heat-conducting contact surfaces are provided between the board magazines and the body of the shelf and between the latter and the heat exchangers. Each heat exchanger and the cooler are arranged to permit a high packing density of the aforesaid telecommunications equipment in the rack and to contribute towards removing heat emitted by the equipment by means of heat conduction via the aforesaid heat-transfer members. In one embodiment (FIG. 7), the total shelf cooling function provides for the aforesaid removal of heat unassisted. This heat removal is also provided for by natural convection at the hot and cold surfaces and by radiation. In a second embodiment (FIG. 1), the shelf cooling function is combined with a row cooling function (open or closed), air conditioner or similar installation.
Abstract:
A cable management rack is provided within which a heat-generating device is mountable. The rack includes a first upright and a second upright attached to opposite respective lateral sides of a base and a top member, and respective side-facing panels. Each of the panels defines a plurality of vent holes arranged in an array. A cable management system includes a cable management rack for accommodating a heat generating device, a first baffle mounted with respect to a first upright of the rack and for redirecting a rearward flow of cool air sideways from a space adjacent a front side of the rack, and a second baffle mounted with respect to a second upright of the rack and for redirecting a sideways flow of exhaust air from the rack and through the second upright into a space adjacent a rear side of the rack.
Abstract:
A cable management rack is provided within which or upon which a heat-generating device is mountable, and which encompasses a vertical rectangular frame open in a front and a rear of the frame. The rack includes a first upright and a second upright attached to opposite respective lateral sides of a base and a top member, and respective side-facing panels. Each of the panels defines a plurality of vent holes arranged in an array and permit the rack to receive a sideways flow of cooling air into a first side of the rack through one of the vent hole arrays for cooling a heat-generating device mounted between the panels, and permit the rack to discharge a sideways flow of exhaust air through the other vent hole array. Each of the array of vent holes may manifest a honeycomb pattern of vent holes, and each of the vent holes may manifest an hexagonal shape. A cable management system includes a cable management rack for accommodating a heat generating device, a first baffle mounted with respect to a first upright of the rack and for redirecting a rearward flow of cool air sideways from a space adjacent a front side of the rack, and a second baffle mounted with respect to a second upright of the rack and for redirecting a sideways flow of exhaust air from the rack and through the second upright into a space adjacent a rear side of the rack. A method of cooling a heat-generating device mounted in or on a cable management rack includes providing a sideways flow of cooling air into the rack and into the device.
Abstract:
The invention relates to a distributor device for use in communication and data systems technology, comprising at least one distributor connection module. Said distributor connection module comprises a housing which houses input and output contacts, accessible from the exterior, for connecting lines, cables or wires. The distributor device comprises at least one additional connection module which comprises at least one SDH/SONET transport interface and outputs for electrical signals. The outputs of the connection module are connected to inputs of the distributor connection module. The connection module comprises at least one converter for converting SDH/SONET transport signals to E1 signals and vice versa. The invention also relates to a corresponding connection module and a corresponding distributor connection module.
Abstract:
The disclosure describes an active network interface device (NID) enclosure having a modular construction that provides flexibility to a vendor and permits independent access to technician-accessible connections and subscriber-accessible connections while promoting resistance to environmental and security threats. The active NID enclosure includes an electronics enclosure and an access enclosure. The electronics enclosure contains active electronic components for conversion of data carried on a network signal carrier into services for delivery to subscriber devices. The access enclosure includes two separate access compartments, having separate covers, for independent access to either network terminals or subscriber terminals.