Abstract:
A reinforced flexible printed circuit board (20) includes a conductive portion (21) and a connection portion (22). The conductive portion includes a first metallic wire layer (13) having a plurality of conductive metallic wires, and two first insulation layers (24). The connection portion includes a second metallic wire layer (16) having a plurality of conductive metallic wires, two second insulation layers (17), and a reinforcement board (19) having a hand-grip portion (291). The reinforcement board is attached to one of the second insulation layers to reinforce the connection portion, and the hand-grip portion is positioned at an end of the reinforcement board so that it is convenient for workers to assemble the reinforced flexible printed circuit board to other components.
Abstract:
In part, and in addition to apparatus and methods presented, an expansion board to be connected/disconnected to/from its mother board easily is provided. A face of a CDC (Communication Daughter Card), which is an expansion board to be connected to the mother board of a computer system is covered by an insulating sheet. In the CDC, an edge of one end of this insulating sheet is extended so as to form a projection. A user can take this projection with fingers, thereby carrying and connecting/disconnecting the CDC to/from the mother board easily.
Abstract:
A method for preforming of two or more flexible cables in an arrangement consisting of a combination of rigid printed circuit boards and flexible cable sections extending therebetween. Moreover, also provided is an apparatus for the preforming of two or more flexible cable sections of a combination of rigid printed circuit boards and therewith interposed flexible cable sections which are adapted to interconnect the rigid printed circuit boards. The apparatus consists of a tool constituted of an elongated cylindrical member having a tapered leading end which narrows into an ultra-thin flat end section of a blade-like configuration, and which is adapted to be pushed between the flexible cables and so as to preform the flexible cable sections and cause them to yield in a predetermined outwardly bowed permanently relationship between the rigid printed circuit boards at the opposite ends thereof to lengthen the fatigue life of the conductors in the flexible cable sections.
Abstract:
A method for preforming of two or more flexible cables in an arrangement consisting of a combination of rigid printed circuit boards and flexible cable sections extending therebetween. Moreover, also provided is an apparatus for the preforming of two or more flexible cable sections of a combination of rigid printed circuit boards and therewith interposed flexible cable sections which are adapted to interconnect the rigid printed circuit boards. The apparatus consists of a tool constituted of an elongated cylindrical member having a tapered leading end which narrows into an ultra-thin flat end section of a blade-like configuration, and which is adapted to be pushed between the flexible cables and so as to preform the flexible cable sections and cause them to yield in a predetermined outwardly bowed permanently relationship between the rigid printed circuit boards at the opposite ends thereof to lengthen the fatigue life of the conductors in the flexible cable sections.
Abstract:
In a manufacturing method of a rigid-flexible printed circuit board, slits for defining two sides of a removing portion are formed in a part of plural resin films, and the plural resin films are stacked and bonded to form a circuit board. Then, a product portion is cut from the circuit board. Before the bonding, a separation sheet is disposed between predetermined adjacent layers of the plural resin films to separate the removing portion from a residual portion of the product portion. Accordingly, while the product portion is cut from the circuit board, the removing portion is separated from the product portion, because the removing portion are defined by the separation sheet, the slits, and a cutting outline of the product portion.
Abstract:
An undetachable electrical and mechanical connection (4) between a contact element (7) has contacts (31) and a counter-contact element (8) has counter-contacts (27) with a flexible section (39) of the contact element (7) in at least the area of the contacts (31). Furthermore, the contact element (7) has at least one first and second layer (21, 22) which, in the area of the flexible section (39), define a gap (23) between them in which the counter-contact element (8) is located, the first and second layer (21, 22) each having at least one contact (31) on the inside surfaces (40) of the layers facing each other and the counter-contact part (8) having at least one counter-contact on each of its top and bottom (25, 26).
Abstract:
A wiring substrate with reduced thermal expansion stress. A wiring substrate, such as a laminated PWB, thin film circuit, lead frame, or chip carrier accepts an integrated circuit, such as a die, a flip chip, or ball grid array package. The wiring substrate has a thermal expansion stress reduction insert, void, or constructive void in a thermal expansion stress region proximate to the integrated circuit. The thermal expansion stress reduction insert or void may extend a selected distance from the edge or edges of the integrated circuit attachment area. The thermal expansion stress reduction insert or void improves the flexibility of the wiring substrate in the region that is joined to the integrated circuit, thus reducing thermal stress between components of the wiring substrate-integrated circuit assembly. In another embodiment, layers of a laminated wiring substrate are intentionally not bonded beneath the chip attach area, thus allowing greater flexibility of the upper layer of the laminate.
Abstract:
A connecting strength at a bonding site between a wiring layer 1c and a conductor 1d is enhanced by comparing a bonding strength between a wiring layer 14 provided by covering the conductor 1d on an insulating base 1a and the conductor 1d with a bonding strength between the wiring layer 1c and the insulating base 1a in an adjacency of the conductor to set the latter relatively lower.
Abstract:
A wiring substrate with reduced thermal expansion stress. A wiring substrate, such as a laminated PWB, thin film circuit, lead frame, or chip carrier accepts an integrated circuit, such as a die, a flip chip, or ball grid array package. The wiring substrate has a thermal expansion stress reduction insert, void, or constructive void in a thermal expansion stress region proximate to the integrated circuit. The thermal expansion stress reduction insert or void may extend a selected distance from the edge or edges of the integrated circuit attachment area. The thermal expansion stress reduction insert or void improves the flexibility of the wiring substrate in the region that is joined to the integrated circuit, thus reducing thermal stress between components of the wiring substrate-integrated circuit assembly. In another embodiment, layers of a laminated wiring substrate are intentionally not bonded beneath the chip attach area, thus allowing greater flexibility of the upper layer of the laminate.
Abstract:
An electrical interconnection structure. The electrical interconnection structure includes a mother board substrate having a plurality of layers. At least one layer includes a signal path having a characteristic impedance of Z.sub.O and a conductive ground plane. A signal via passes through each layer of the mother board substrate. The signal via electrically is connected to the signal path. A ground via passes through each layer of the mother board substrate. The ground via is electrically connected to the conductive ground plane. The electrical interconnection structure further includes a plurality of flex circuits. Each flex circuit includes a flex signal path having a characteristic impedance of Z.sub.O and a flex ground plane. Each flex signal path is electrically connected to the signal via and each flex ground plane is electrically connected to the ground via. The connections between the flex signal path and the signal via, and between the flex ground plane and the ground via can be permanent or separable.