Abstract:
A printed circuit board includes a first signal layer, a first reference layer, a second signal layer, and a third signal layer in that order and includes a first slanted via and a second slanted via. The first signal layer includes an parallel first transmission wire and a second transmission wire. The first and second transmission wires are coupled with each other and cooperatively constitute a first differential pair with an edge-coupled structure. The second signal layer includes a third transmission wire. The third signal layer includes a fourth transmission wire parallel to and coupled with the third transmission wire. The third and fourth transmission wires cooperatively constitute a second differential pair with a broadside-coupled structure. The first slanted via obliquely are interconnected between the first transmission wire and the third transmission wire. The second slanted via obliquely are interconnected between the second transmission wire and the fourth transmission wire.
Abstract:
Disclosed is a structure for impedance matching by applying a CPW structure to an impedance discontinuous portion on a data signal line or using a micro-strip open stub so as to be used for high-speed transmission by a flexible PCB. According to the present invention, it is possible to fabricate a flexible PCB capable of performing low-priced and high-speed transmission.
Abstract:
A communication jack has a housing with a face having a plug receiving aperture. A plurality of conductive path pairs extends from corresponding plug interface contacts located at the plug receiving aperture to corresponding output terminals. A first circuit board is connected to the plug interface contacts and a second circuit board is connected to the plug interface contacts and the output terminals. The first circuit board has a first single stage of crosstalk compensation with opposite polarity of the crosstalk of a plug for a first combination of the conductive path pairs. The second circuit board includes a second single stage of opposite polarity crosstalk compensation for some of the conductive path pairs not compensated on the first circuit board. The stages cancel substantially all of the crosstalk caused by the plug, for the signal operating frequencies, for corresponding combinations of the conductive path pairs.
Abstract:
A communication jack having crosstalk compensation features for overall crosstalk interference reduction is disclosed. In one embodiment, the jack is configured to receive a plug to form a communication connection, and comprises jack contacts disposed in the jack, with each contact having at least a first surface and a second surface. Upon the plug being received by the jack, the plug contacts interface with the first surface of the jack contacts. The jack further includes a first capacitive coupling connected between two pairs of jack contacts to compensate for near end crosstalk, with the first capacitive coupling being connected to the pairs of jack contacts along the second surface adjacent to where the plug contacts interface with the jack contacts. A far end crosstalk compensation scheme is also set forth.
Abstract:
A printed circuit board (“PCB”) includes a first pattern structure, a second pattern structure, a third pattern structure, and a fourth pattern structure. The first pattern structure includes a first ground pattern. The second pattern structure includes a first line pattern overlapping the first ground pattern and a second ground pattern electrically insulated from the first line pattern. The third pattern structure includes a third ground pattern overlapping the first line pattern and a second line pattern overlapping the second ground pattern. The fourth pattern structure includes a fourth ground pattern overlapping the second line pattern. Therefore, the PCB may decrease noise.
Abstract:
An electrical device includes a plurality of interconnects passing through a plane. The interconnects have a longitudinal axis substantially perpendicular to the plane and including an arrangement pattern which reduces or eliminates cross-talk between nearest neighboring interconnects, wherein the interconnects include a first differentially driven signal conductor pair and at least one other signal conductor, and the arrangement includes the at least one other signal conductor disposed at a substantially same distance from each conductor of the first differentially driven signal conductor pair.
Abstract:
A laminated body and fabrication method thereof, which allow space saving and control of variation in internal layer resistance, are provided. When forming an internal-layer resistive element 7 in a multilayer ceramic substrate 10, the internal-layer resistive element 7 is connected to exterior electrodes (an upper surface electrode 32 and an undersurface electrode 34) via multiple via-electrodes 3a and 3b arranged in parallel, without a pad electrode adopted in the conventional laminated body. Moreover, in a multilayer ceramic substrate having multiple internal-layer resistive elements arranged in a multilayer structure, multiple internal-layer resistive elements are directly connected via multiple via-electrodes arranged in parallel.
Abstract:
A multi-functional composite substrate structure is provided. The first substrate with high dielectric constant and the second substrate with low dielectric constant and low loss tangent are interlaced above the third substrate. One or more permeance blocks may be formed above each substrate, so that one or more inductors may be fabricated thereon. One or more capacitors may be fabricated on the first substrate. Also, one or more signal transmission traces of the system impedance are formed on the second substrate of the outside layer. Therefore, the inductance of the inductor(s) is effectively enhanced. Moreover, the area of built-in components is reduced. Furthermore, it has shorter delay time, smaller dielectric loss, and better return loss for the transmission of high speed and high frequency signal.
Abstract:
A flexible printed circuit board (FPCB) includes a signal layer, upper and lower ground layers, and two dielectric layers. The signal layer includes a differential pair comprising two transmission lines to transmit a pair of differential signals. The dielectric layers are located on and under the signal layer to sandwich the signal layer. The upper ground layer is attached to the dielectric layer on the signal layer, opposite to the signal layer. The lower ground layer is attached to the dielectric layer under the signal layer, opposite to the signal layer. Each ground layer includes a grounded sheet made of conductive material. Two voids are defined in each ground layer and located at opposite sides of the corresponding grounded sheet. Distances between the middle line of the grounded sheet of each ground layer and middle lines of the two transmission lines are equal.
Abstract:
A wiring board of the present invention (1) is arranged so that: pads (30) arranged in a plurality of rows include: first-row pads (30a) connected to first metal wires (10a) among metal wires (10); and second-row pads (30b) connected to second metal wires (10b) among the metal wires (10), the first metal wires (10a) being longer than the second metal wires (10b); and that each of the first connecting lines (10a) is formed so as to be separated from a corresponding one of the second-row pads (30b) by at least an insulating layer, and so as to extend not through a region between the corresponding second-row pad (30b) and a second-row pad (30b) adjacent to the corresponding second-row pad (30b), but through a region below the corresponding second-row pad (30b).