Abstract:
A circuit includes a substrate having a dielectric layer with a first surface and a second surface. A conductive layer is formed on the first surface. A beveled via is formed in a dielectric layer of the substrate. The via has a first opening of a first width in the first surface, and a second opening of a second width in the second surface, the second width being greater than the first width. A conductive plug is connected to the conductive layer. The plug is formed in the via and extends from adjacent the first opening toward the second opening, and terminates adjacent the second opening at a plug interface surface. A conductive solder ball is connected to the plug interface surface and extends to protrude from the second surface.
Abstract:
Disclosed is a tape carrier package for electrically connecting LCD panel with source and gate driver PCBs and an LCD module to which the tape carrier package is applied. The tape carrier package includes: a first flexible film made of insulator; a conductive pattern formed on the first flexible film and having a plurality of input/output leads each having an input terminal and an output terminal; a semiconductor chip having a plurality of input/output terminals electrically connected with the input/output leads of the conductive pattern; and a second film made of insulator, the second film coating the conductive input/output leads such that the input/output leads are exposed by a selected length from respective ends thereof, wherein at least one selected lead of the input/output leads disposed at at least one sided end of the tape carrier package comprises a first portion and a second portion which is wider than the first portion, the second portion extending from a first selected position of the exposed leads to a second selected position of the second film passing over a boundary between the second film and the exposed leads.
Abstract:
In a flat panel display device, in which a display panel 1 loosely fitted on a main surface of a chassis 4 and circuit substrates held in hook portions provided on side surfaces of the chassis are connected each other through TCP's by bending the latter TCP's, and a method for manufacturing the same device, a main slit for a rounded portion of each TCP is formed in a rounded portion of the TCP and an auxiliary sub slit is also formed adjacent to the main slit. In order to reduce the peeling force exerted on connecting/fixing portions between the TCP's and the display panel, the circuit substrate is pulled up by bending the main and sub slits and then returning the sub slit to a flat state to insert the circuit substrate into the hook portions.
Abstract:
An active matrix type liquid crystal display device having a first and a second substrate with a liquid crystal layer therebetween, a plurality of drain lines and gate lines formed on the first substrate and crossing each other in a matrix form, and a plurality of counter signal lines formed on the first substrate and extending along an extension direction of the gate lines. Pixels are delimited by adjacent ones of the drain lines and the gate lines. A counter signal line connects counter electrodes of neighboring pixels which are arranged with a drain line therebetween by crossing the drain line, and the counter electrodes of neighboring pixels which are arranged with a gate line therebetween are electrically connected by a connecting member. The connecting member is arranged so as to be spaced with respect to the drain line in plane view.
Abstract:
A liquid crystal display apparatus that can detect a signal in an input signal wire and perform tests by measuring the resistance of the wire even without any signal input substrate is disclosed. The liquid crystal display apparatus includes an almost quadrilateral liquid crystal panel having a liquid crystal display part and a plurality of first drive IC substrates. The first drive IC substrates are aligned along an edge of the liquid crystal panel and connected to the liquid crystal panel. Each first drive IC substrate has a first drive IC and further includes a through wire to connect between distinct terminals of a plurality of terminals aligned along an edge thereof, and a test pad is formed on a portion of the through wire.
Abstract:
A liquid crystal display device which provides reliable connection between a semiconductor device and a printed circuit board includes a liquid crystal display panel, a printed circuit board disposed close to the liquid crystal display panel, and a semiconductor device of a film carrier type which is disposed to lie between the liquid crystal display panel and the printed circuit board, and terminals of the semiconductor device are respectively connected by an anisotropic conductive film to terminals of the printed circuit board that are disposed in opposition to the respective terminals of the semiconductor device.
Abstract:
A chip carrier film comprising a metal wiring formed on a surface of a base film, a first insulating film covering the metal wiring excluding a semiconductor chip connecting pad portion and a terminal connecting pad portion, a semiconductor chip connected to the semiconductor chip connecting pad portion of the metal wiring and mounted on the base film, and a second insulating film formed on a back face of the base film and having a different coefficient of curing shrinkage from that of the first insulating film. It is possible to obtain a chip carrier film capable of preventing the suspension of the base film from being generated by the self weight of the semiconductor chip when holding the base film by the delivery device and of carrying out mounting without a hindrance.
Abstract:
A liquid crystal display device has a flexible circuit board which can prevent the disconnections of output side conductive layer patterns formed at the border portion of the solder resist layer. A flexible base film has a liquid crystal panel engaging portion, engaged with a liquid crystal panel on one side thereof. A driving IC is formed at the central portion of the base film to apply driving signals to driving devices of the liquid crystal panel. A first conductive layer patterns are extended on the base film from the driving IC to the liquid crystal panel engaging portion to electrically connect the driving IC to the liquid crystal panel. A solder resin layer exposes the first conductive layer patterns formed on the liquid crystal panel engaging portion and covers the first conductive layer patterns of the periphery of the driving IC. A reinforcing member prevents the first conductive layer patterns from disconnecting due to the bending fatigue of the border portion of the liquid crystal panel engaging portion and the solder resin layer.
Abstract:
A high-frequency signal from a tape-shaped line section having a surface layer signal lead and surface layer GND lead disposed on both sides thereof is directly inputted to a semiconductor chip via a signal surface layer wiring of a package substrate and through solder bump electrodes. Alternatively, a high-frequency signal from the semiconductor chip is outputted to the outside via the tape-shaped line section in reverse. Owing to the transmission of the high-frequency signal by only a microstrip line at the whole surface layer of the package substrate, the high-frequency signal can be transmitted by only the microstrip line at the surface layer without through vias or the like. Accordingly, the high-frequency signal can be transmitted without a loss in frequency characteristic, and a high-quality high-frequency signal can be transmitted with a reduction in loss at high-frequency transmission.
Abstract:
A tape carrier with high density wiring patterns and having high flexibility, a tape carrier package using such tape carrier, and a method of manufacturing them. The tape carrier has a base film made of an insulating material and having wiring patterns formed thereon. The tape carrier also has a bending area for bending the tape carrier therein. In the bending hole region, a plurality of round holes are formed regularly. Diameter of each of the holes is larger than a space between the wiring patterns in the bending area. Preferably, the centers of the holes are located at grid points of an assumed predetermined grid and at the intersections of diagonal lines connecting the grid points. Also, the center of each of the plurality of holes is located on the center line of a space between adjacent wiring patterns in the bending area.