Abstract:
An orthogonal array is formed by performing electromagnetic field analysis only once and determining a range by using the mount position and type of a capacitor and the number of capacitors as parameters to perform circuit analysis a small number of times. An estimation equation is formed by using as an index a result of the absolute value of the calculated power source impedance, and a capacitor is disposed to reduce noises by using the estimation equation.
Abstract:
An interposer to be mounted with an integrated circuit to be a test object is provided with a switch and a probe to detect an electric current corresponding to individual terminals of the integrated circuit. A test pattern signal is then inputted to the integrated circuit through a test substrate as a switch that is connected to a power supply terminal of the integrated circuit and that is turned off. If the integrated circuit normally operates and the current values of all the terminals of the integrated circuit are within a tolerance, the power supply terminal connected to the turned-off switch is identified as a terminal that may be removed.
Abstract:
High density mounting and power source sharing are achieved by a digital semiconductor element and an analog semiconductor element provided in a common semiconductor device. A power layer for analog operation is connected to one end of an EBG (Electromagnetic Band Gap) layer, a power layer for digital operation is connected to the other end of the EBG layer, ground terminals for the respective elements are connected to a common ground layer, and a ground layer for separating the power layer for analog operation and the EBG layer from each other is disposed between the power layer for analog operation and the EBG layer. Thereby, high density mounting is achieved along with reducing interference of the power source to an analog chip.
Abstract:
Stacked semiconductor device includes plural memory chips, stacked together, in which waveform distortion at high speed transmission is removed. Stacked semiconductor device 1 includes plural memory chips 11, 12 stacked together. Data strobe signal (DQS) and inverted data strobe signal (/DQS), as control signals for inputting/outputting data twice per cycle, are used as two single-ended data strobe signals. Data strobe signal and inverted data strobe signal mate with each other. Data strobe signal line for the data strobe signal L4 is connected to data strobe signal (DQS) pad of first memory chip 11. Inverted data strobe signal line for /DQS signal L5 is connected to inverted data strobe signal (/DQS) pad of second memory chip 12.
Abstract:
An object of the present invention is to reduce jitter dependent on data patterns by an interface receiver. Another object of the present invention is to provide an LSI capable of automatically adjusting a delay time for jitter reduction so as to be able to control its setting for each device. Since the jitter dependent on the data patterns can be expected according to how the previous state is being placed, the state of data received by the receiver is held, and the timing provided to fetch input data is adjusted according to the held state and the input data. As a control mechanism lying in the receiver, for determining a delay time dependent on the form of mounting, a driver transmits and receives pulse data set at one-cycle intervals and pulse data set at two-cycle intervals as test patterns. The receiver has an automatic control mechanism for determining a delay time optimal to a system from the difference between a rising time of each of pulses different in pulse width and its falling time.
Abstract:
An object of the present invention is to reduce jitter dependent on data patterns by an interface receiver. Another object of the present invention is to provide an LSI capable of automatically adjusting a delay time for jitter reduction so as to be able to control its setting for each device. Since the jitter dependent on the data patterns can be expected according to how the previous state is being placed, the state of data received by the receiver is held, and the timing provided to fetch input data is adjusted according to the held state and the input data. As a control mechanism lying in the receiver, for determining a delay time dependent on the form of mounting, a driver transmits and receives pulse data set at one-cycle intervals and pulse data set at two-cycle intervals as test patterns. The receiver has an automatic control mechanism for determining a delay time optimal to a system from the difference between a rising time of each of pulses different in pulse width and its falling time.
Abstract:
A data transfer method is executed to transit a three-state transmitting circuit from a high-impedance state into a data output state, transmit a preamble (dummy data) onto a bus, and sequentially transmit the essential data. The shortening of a waveform caused in the first data piece after the transition from the high-impedance state into the data output state is executed against the preamble and no shortening of a waveform is not brought about in the essential data subsequent to the preamble. This makes it possible to exclude the limitation on speeding up the data transfer imposed by the shortening of the waveform.
Abstract:
A motherboard for backplane buses is provided that reduces noise due to entry of external signals into signal wiring which interconnects modules, or noise due to any external signals entering a power supply after being routed around the power supply.An EBG pattern formed up of two wiring regions different from each other in impedance is periodically disposed in at least three arrays as part of the power supply layer(s) constituting a microstripline structure (one layer adjacent to a signal layer is a power supply layer, and the other layer is interposed in air) or a stripline structure (both layers adjacent to a signal layer are power supply layers); the part of the power supply layer(s) not being involved in signal transmission between the modules on the motherboard for backplane buses.
Abstract:
As a power feed route in a semiconductor chip, a power feed route which reduces antiresonance impedance in the frequency range of tens of MHz is to be realized thereby to suppress power noise in a semiconductor device. By inserting structures which raise the resistance in the medium frequency band into parts where the resistance is intrinsically high, such as power wiring in a semiconductor package and capacitor interconnecting electrode parts, the antiresonance impedance in the medium frequency band can be effectively reduced while keeping the impedance low at the low frequency.
Abstract:
In each of the information processing apparatuses connected to each other via a network, there is arranged a quality of service (QOS) table to which functions and performance thereof are registered. When an information processing apparatus is additionally linked with the network, a QOS table thereof is automatically registered to a local directory of the network such that an agent converts the contents of the QOS table into service information to be supplied via a user interface to the user. Thanks to the operation, information of functions and performance of each information processing apparatus connected to the network is converted into service information for the user. Consequently, the user can much more directly receive necessary services.