Abstract:
A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as ones typically found on a computer board.
Abstract:
A flexible circuit is populated with integrated circuits. Integrated circuits populated on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. In a preferred embodiment, the overall module profile does not, consequently, include the thickness of the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. The flex circuit may be aligned using tooling holes in the flex circuit and substrate. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers. Other embodiments may stagger or offset the ICs.
Abstract:
Multiple DIMM circuits or instantiations are presented in a single module. In some embodiments, memory integrated circuits (preferably CSPs) and accompanying AMBs, or accompanying memory registers, are arranged in two ranks in two fields on each side of a flexible circuit. The flexible circuit has expansion contacts disposed along one side. The flexible circuit is disposed about a supporting substrate or board to place one complete DIMM circuit or instantiation on each side of the constructed module. In alternative but also preferred embodiments, the ICs on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers. Other embodiments may stagger or offset the ICs or include greater numbers of ICs.
Abstract:
An apparatus for detecting spectral components in a predetermined frequency band within a signal includes first and second processing devices and first, second, and third connectors tuned to the frequency band. The first processing device includes first, second, and third elements. The second processing device includes fourth, fifth, and sixth elements. The first connector is coupled to the first and fourth elements, the second connector to the second and fifth elements, and the third connector to the third and sixth elements. An apparatus for analyzing spectral components in predetermined frequency bands within a signal includes an input for receiving the signal, a device for isolating a portion of the signal, and frequency detectors coupled in parallel to the device. Each frequency detector corresponds to a frequency band and generates an output signal component corresponding to a proportion of energy of the spectral components detected by the frequency detector.
Abstract:
The present invention relates to a disposable concrete forming apparatus. The apparatus includes an elongate, tubular and rigid form having at least one inner wall surface defining an enclosure in which concrete can be poured and allowed to harden. The apparatus further includes a flexible liner of predetermined thickness which lines the inner surface to preclude formation of form lines on the hardened concrete that correspond to markings on the inner wall surface of the rigid form. The flexible liner has at least one outside wall surface for each inner wall surface and is movable between a compressed position permitting insertion of the liner into the enclosure and a normal expanded position with the outside wall surface pressing against the inner wall surface of the rigid form. As a result, no gap is present between the inner wall surface and the outer wall surface.
Abstract:
Flexible circuitry is populated with integrated circuitry (ICs) disposed along one or both of its major sides. The populated flexible circuitry is disposed proximal to a rigid substrate to place the integrated circuitry on one or both sides of the substrate with one or two layers of integrated circuitry on one or both sides of the substrate. The rigid substrate exhibits adhesion features that allow more advantageous use of thermoplastic adhesives with concomitant rework advantages and while providing flexibility in meeting dimensional specifications such as those promulgated by JEDEC, for example.
Abstract:
Turbulence inducers are provided on circuit modules. Rising above a substrate or heat spreader surface, turbulence generators may be added to existing modules or integrated into substrates or heat spreaders employed by circuit modules constructed according to traditional or new technologies.
Abstract:
Flexible circuitry is populated with integrated circuitry (ICs), and contacts are distributed along the flexible circuitry to provide connection to an application environment. The flexible circuitry is disposed about a rigid substrate, placing the ICs on one or both sides of the substrate with one or more layers of integrated circuitry on one or both sides of the substrate. The substrate is preferably devised from thermally-conductive materials and one or more thermal spreaders are in thermal contact with at least some of the ICs. Optionally, as an additional thermal management feature, the module may include a high thermal conductivity thermal sink or area that is disposed proximal to higher thermal energy IC devices. In preferred embodiments, extensions from the substrate body or substrate core encourage reduced thermal variations amongst the ICs of the module while providing an enlarged surface for shedding thermal energy from the module.
Abstract:
A flexible circuit is populated with integrated circuits. Integrated circuits populated on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. In a preferred embodiment, the overall module profile does not, consequently, include the thickness of the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. The flex circuit may be aligned using tooling holes in the flex circuit and substrate. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers. Other embodiments may stagger or offset the ICs.
Abstract:
Modules with larger areas for device mounting but minimized profiles are provided. In preferred embodiments, modules that employ one or more flex circuits have sculpted supportive substrates to selectively accommodate larger or taller profile devices. In several preferred embodiments, higher profile circuits such as AMBs, for example, are disposed in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. In other preferred embodiments, both the substrate and the flexible circuitry have openings into which a device of greater profile such as, for example, an AMB or a logic device with or without a resident heat sink are provided with a volume to occupy without adding the full profile of the taller device to the profile of the module itself.