Abstract:
A sealed, passively pumped, polycrystalline ceramic vacuum chamber and method for fabricating the chamber are disclosed. The body of the vacuum chamber is made from a polycrystalline ceramic, for example, alumina. The vacuum chamber includes one or more windows made from a transparent ceramic, for example, sapphire, to accommodate optical access, while remaining amorphous-glass free to minimize or eliminate helium permeation. The vacuum chamber components are joined via laser welding or furnace brazing and the completed chamber is bakeable at temperatures up to 400° C. The vacuum chamber can operate at high or ultra-high vacuum pressures for an extended period through the use of one or more getter-based pumps. The vacuum chamber may include one or more atomic sources depending upon the application.
Abstract:
The invention provides a new apparatus (20) and method for producing entirely new types of nanoparticles exhibiting novel properties. The apparatus comprises a vacuum chamber (22) containing a gas and feed means (1) for feeding a liquid jet (26) into the chamber and through the gas. The invention extends to the new types of nanoparticles per se, and to uses of such nanoparticles in various biomedical applications, such as in therapy and diagnosis, as well as in opto-electronics.
Abstract:
The invention concerns a continuous flow process for manufacturing surface modified metal oxide nanoparticles by supercritical solvothermal synthesis in an reaction medium flowing within a continuous flow chamber, said continuous flow chamber containing a hydrolysis area and a supercritical area, said process comprising the introduction of a flow of metal oxide precursor into the continuous flow chamber at a point P located in the hydrolysis area or in the supercritical area, and the introduction of a flow of is located downstream of P1 with respect to the flow direction, as well as the device for carrying out this process.
Abstract:
A device for synthesising and studying compounds under controlled temperatures and pressures includes: a body delimiting a vacuum chamber including temperature-regulation means and vacuum-application means, and having one or more viewing windows enabling the inside of the chamber to be observed from the outside; temperature-regulation means that are intended for regulating the temperature inside the vacuum chamber; and vacuum-application means that are intended for regulating the pressure in the vacuum chamber; wherein it includes, inside the vacuum chamber, a sealed structure delimiting a sealed chamber having one or more viewing window facing said one or more windows in said body, and at least one pipe that is in fluid communication firstly with the inside of said sealed chamber and secondly with an outlet that is made in the body and provided in order to be connected to one or more sources of gas for synthesising said compound or sample.
Abstract:
Alignment systems employing actuators provide relative displacement between lid assemblies of process chambers and substrates, and related methods are disclosed. A process chamber includes chamber walls defining a process volume in which a substrate may be placed and the walls support a lid assembly of the process chamber. The lid assembly contains at least one of an energy source and a process gas dispenser. Moreover, an alignment system may include at least one each of a bracket, an interface member, and an actuator. By attaching the bracket to the chamber wall and securing the interface member to the lid assembly, the actuator may communicate with the bracket and the interface member to provide relative displacement between the chamber wall and the lid assembly. In this manner, the lid assembly may be positioned relative to the substrate to improve process uniformity across the substrate within the process chamber.