Abstract:
The present invention relates to, among other items, a concentrating reflector comprising: a reflector reflective to radiant electromagnetic energy and operable to produce a concentration of electromagnetic energy; and a safety member disposed to provide a physical barrier at least partially surrounding a concentration of electromagnetic energy at a focal point or focal zone defined by the reflector, wherein the apparatus is further characterized as having a radiant-energy-absorbing structure of one or more material-processing or food-processing devices positioned in proximity to the focal point or focal zone, for example, a beverage-brewing device such as for brewing coffee or tea; a kernel-popping device such as for popping popcorn, among others.The present invention further discloses collapsible, nesting reflector apparatus, whereby a plurality of the apparatus, when in a collapsed condition, are compactly stackable to facilitate portage and storage.The present invention also discloses improved methods for enabling solar energy to be used to prepare edible materials for human consumption.
Abstract:
A treatment apparatus for at least partially disinfecting a fluid such as water comprises a pipe (16) for conveying a flow of fluid to be treated, a series of ultraviolet (UV) light emitting diodes (LEDs) (62) for emission of the UV light into the fluid, and a control circuit (70) for controlling operation of the LEDs. The control circuit is configured for pulsing the LEDs and the LEDs are arranged such that the fluid flows over a surface of each LED, as it is conveyed by the pipe in operation.
Abstract:
An inductive power supply system for providing power to one or more inductively powered devices. The system includes a mechanism for varying the physical distance or the respective orientation between the primary coil and secondary coil to control the amount of power supplied to the inductively powered device. In another aspect, the present invention is directed to an inductive power supply system having a primary coil and a receptacle disposed within the magnetic field generated by the primary coil. One or more inductively powered devices are placed randomly within the receptacle to receive power inductively from the primary coil. The power supply circuit includes circuitry for adjusting the power supplied to the primary coil to optimize operation based on the position and cumulative characteristics of the inductively powered device(s) disposed within the receptacle.
Abstract:
Some demonstrative embodiments of the invention include an illumination-based liquid disinfection device. The disinfection device may include, for example, a conduit to carry a flowing liquid to be disinfected, the conduit having an inlet to receive the liquid and an outlet to discharge the liquid, one or more UV transparent sleeves having a hydro-dynamic shape and one or more UV light sources, each positioned within its respective protective sleeve.
Abstract:
An inductive power supply system for providing power to one or more inductively powered devices. The system includes a mechanism for varying the physical distance or the respective orientation between the primary coil and secondary coil to control the amount of power supplied to the inductively powered device. In another aspect, the present invention is directed to an inductive power supply system having a primary coil and a receptacle disposed within the magnetic field generated by the primary coil. One or more inductively powered devices are placed randomly within the receptacle to receive power inductively from the primary coil. The power supply circuit includes circuitry for adjusting the power supplied to the primary coil to optimize operation based on the position and cumulative characteristics of the inductively powered device(s) disposed within the receptacle.
Abstract:
An ultraviolet gas discharge lamp having contact pins extending downward from a base cap toward an opposing end. The lamp is placed within a conduit or duct for disinfecting air or water flowing within the conduit. The reverse contact pins that extend toward the opposing end mate with contact holes in a socket attached to the conduit through which the lamp is inserted. The lamp is only energized when the lamp is fully inserted into the duct and is de-energized upon removing the lamp from the duct. A shield protects the pins. A window may be place in the base cap so as to visually confirm that the lamp is energized and radiating. A key and mating receiver may be used on the base cap and the socket so as to prevent accidental insertion of an inappropriate lamp.
Abstract:
An apparatus having one or more UV bulbs arranged around a structural element and within an outer conductive element. The apparatus also contains an inner conductive element which extends the length of the apparatus. The inner and outer conductive elements are coupled to a microwave source to enable the UV bulbs to be powered.
Abstract:
A fluid purification device is provided, which comprises a chamber having an inlet and an outlet, a fluid mover, such as a fan, which causes fluid to pass through the chamber from the inlet towards the outlet and four elongate UV-C light sources in an arrangement such that fluid passes along their length and such that each light source forms an elongate edge of a square prism. The volume of the chamber and the speed of fluid movement as caused by the fluid mover are such that the fluid has a residence time in the chamber of greater than 1.0 seconds. The device may in particular be used to purify air.
Abstract:
A portable Ultra Violet (UV) sterilizer includes a body into which liquid, or small objects, may be placed. A bulb in the interior of the body and may be activated such that the radiation from the bulb kills DNA-based organisms present in the liquid, or on the objects, and thereby sterilizes the liquid or objects. Through the use of a highly reflective coating on the interior of the body, a lower wattage UV bulb may be used than would be normally necessary.
Abstract:
Thermoplastic compositions that reflect ultraviolet light are provided herein, along with articles of manufacture and methods of fluid purification using the same. The thermoplastic compositions preferably comprise a suitable thermoplastic material and microparticles of UV reflective material, such as aluminum or stainless steel. The thermoplastic compositions are useful, for example, in forming articles of manufacture comprising a UV reflective surface that are suitable for use in a water treatment system in connection with a UV light source.