Abstract:
The present invention relates to a fluid treatment system comprising: an inlet; an outlet; and a fluid treatment zone disposed between the inlet and the outlet. The fluid treatment zone has disposed therein: (i) an elongate first radiation source assembly having a first longitudinal axis, and (ii) an elongate second radiation source assembly having a second longitudinal axis. The first longitudinal axis and the second longitudinal axis are non-parallel to each other and to a direction of fluid flow through the fluid treatment zone. The present fluid treatment system has a number of advantages including: it can treat large volumes of fluid (e.g., wastewater, drinking water or the like); it requires a relatively small “footprint”; it results in a relatively lower coefficient of drag resulting in an improved hydraulic pressure loss/gradient over the length of the fluid treatment system; and it results in relatively lower (or no) forced oscillation of the radiation sources thereby obviating or mitigating of breakage of the radiation source and/or protective sleeve (if present). Other advantages are discussed in the specification.
Abstract:
A disinfection reactor for disinfecting liquid, such as water from a water filtration plant, by exposing the liquid to ultraviolet light. The reactor includes a generally rectangular reactor vessel and two or more medium pressure ultraviolet lamps that extend within the reactor vessel in a direction transverse to the direction of liquid flow therethrough. The reactor vessel includes liquid guide surfaces that guide liquid to flow in a converging flow path having a reduced-area flow region in the vicinity of the ultraviolet lamps. The ultraviolet lamps are positioned spaced from and between the guide surfaces.
Abstract:
A UV sterilization system with autocleaning structure comprises scrubbing collars, at least one cleaning liquid box and at least one sliding bar. Said cleaning means further comprises at least one towing bar, at least one sliding bar and at least one supporting bar. The boxes are vertically mounted on or fixed to the supporting bar(s) to form together with the supporting bar(s) a rectangular shape. A cleaning liquid addition port and a cleaning liquid drain port are respectively provided at the top and close to the bottom of each cleaning liquid box. Said cleaning liquid addition port is connected with a cleaning liquid supply pipe and the cleaning liquid drain port is closed by a detachable sealing member. Several sets of holes with the same diameter for scrubbing collars are provided on the opposite sides of each box with each set at the same height. Each UV lamp is separately installed within a protective sleeve passing through the scrubbing collars. Each towing bar is fixed to the outside of the cleaning liquid box and is connected with the sliding bar and the piston rod of the driving device. The present device according to the invention can be used for the sterilization of fluid such as sewage, tap water, etc.
Abstract:
A cleaning apparatus (10) for a radiation source assembly (35) in a fluid treatment system is described. The cleaning apparatus comprise cleaning chamber (20) and a second chamber (25, 30) independent of the cleaning chamber which defines a fluid (typically water) buffer layer to obviate or mitigate cleaning fluid from the cleaning chamber leaking into the fluid being treated. The fluid treatment system is particularly useful for us in clean water applications in which ultraviolet radiation is used to treat the water while having the advantages of in situ cleaning of the radiation source when it becomes fouled.
Abstract:
A filter device with a UVC lamp for filtering fluids, with a lamp housing, which is installed in a flow of the fluid to be filtered and has a principal axis, is characterized by the fact that at least one cleaning element is arranged in contact with a fluid-side surface of the lamp housing and can rotate about an axis of rotation that coincides with the principal axis.
Abstract:
A fluid treatment system for placement in a flanged pipe fluid conveyance system. The fluid treatment system comprises a flanged ductile iron pipe fitting. The ductile iron pipe fitting comprises: a first flanged opening and a second flanged opening in substantial alignment to define a flow axis aligned substantially parallel to a direction of fluid flow through the first opening and the second opening; and a third flanged opening comprising a first cover element. The first cover element has connected thereto at least one radiation source assembly comprising at least one elongate radiation source having a longitudinal axis substantially transverse to the flow axis. In its preferred form, the fluid treatment system may be advantageously utilized to treat fluid such as water, e.g., municipal waste water, municipal drinking water and the like. The fluid treatment system is particularly advantageous since it utilizes a standard ductile iron pipe fitting and thus, can be readily nullsplicednull into existing piping systems. This facilitates installation of the system and also allows for a significant lowering of manufacturing costs of the system.
Abstract:
Ballast water treatment apparatus and methods for preventing foreign aquatic invasive species form entering marine ecological zones by translocation in ship's ballast water. The apparatus includes a housing, a filter member, and UV water treatment chambers. Methods include use of a ship's fire hydrant system for moving ballast water from the ship's ballast tanks into the apparatus for filtration and treatment. In-port service vessels and dock-side service vehicles are equipped with the treatment and filtration apparatus to provided in-port or dock-side ballast water treatment services. Related methods are also provided.
Abstract:
A fluid treatment apparatus comprises a plurality of elongate UV lamps 13 mounted in a duct 10 and a cleaning assembly 14 comprising a plurality of cleaning heads 20 which are rotated around respective lamps and are simultaneously driven longitudinally thereof to clean the lamps 13 and the internal surface of the duct 10. The cleaning heads 14 each comprise a plurality of portions 28 of titanium dioxide which are biased against the surface of the respective lamps 13 and which produce hydroxyls and oxygen free radicals in the presence of water and oxygen. Hydroxyls and oxygen free radicals are highly reactive and will break down the cells and molecules of the accumulated material on the lamps.
Abstract:
An ultraviolet light irradiation apparatus providing combined mechanical and chemical cleaning of light irradiation tubes for removing radiation blocking precipitates from the surface of the tubes. A scraper ring is fitted to the outside of each of the tubes and includes a chamber for receiving a relatively small quantity of cleaning solution. The scraper rings are reciprocated in a sliding action along the tubes which action synergistically acts with the cleaning solution to remove precipitates from the tube surface including fine particles lodged in concave pits in the tube surface.
Abstract:
The present invention provides an apparatus and method for accomplishing fluid disinfection by passing fluid flow through a uniform array of ultraviolet lamps having cross sections perpendicular to the direction of fluid flow that define channels for the fluid flow. Positioned next to the end of each lamp at the entrance of the fluid flow are triangular shaped delta wings having surfaces inclined at an angle to the direction of fluid flow. The interaction of the fluid flow with each delta wing creates a pair of vortices that rotate in the same direction or in directions opposed to each other. The counter-rotating vortices reinforce each other to minimize dissipation of their mixing strength as they move down the channel. Due to these co-reinforcing properties these counter-rotating vortices more promote efficient mixing of the fluid which is required to achieve more efficient use of the light in the UV disinfection systems, along with heat and/or mass transfer in chemical reactions. Although the present invention is described in particularity as embodied in a UV reactor system, it will be understood by those skilled in the art that the present invention has equal applicability to other types of arrayed flow systems in which increased fluid mixing is desired.