Abstract:
Embodiments of the invention provides methods and systems for synthesizing optical signals with high frequency stability. Using a set of external optical signal manipulators and control systems, embodiments of the invention enhance the resolution of any frequency reference and thereby alleviates the needs for ultra-high-Q cavities in frequency-stable optical signal synthesis. The invention consequently improves the performance of any optical signal generator by a substantial margin, while maintaining the system complexity and power dissipation at levels comparable to the original systems.
Abstract:
An illumination system includes a light source device configured by an excitation light source, a light guiding member and a wavelength converter that are connected in order, and an operation check device. The system further includes: a connector configured to directly and physically connect the operation check device to a light signal emitting end which includes the wavelength converter; a detector configured to detect a light signal emitted from the light signal emitting end when the light signal emitting end and the operation check device are connected by the connector; and an operation determiner configured to determine the operations of the excitation light source, the light guiding member, and the wavelength converter by a detection result in the detector.
Abstract:
An electronic device and a method for testing the light intensity of the electronic device include setting a colorbar comprising a plurality of colors corresponding to different gray values. The testing method further includes read bitmap data of read image upon the condition that the read image is a gray image, and recording a pixel number corresponding to each gray value. The method further includes drawing a relationship curve between the plurality of gray values and corresponding pixel numbers and recoloring the gray image according to the plurality of colors in the colorbar corresponding to the gray values of each pixel in the gray image, and displaying the relationship curve and a recolored gray image on a display.
Abstract:
The present invention is directed to a method of calibrating sensitivity gain. In a preview mode, an imaging device is calibrated by a standard light source, therefore obtaining standard sensitivity gain of the preview mode. In a capture mode, the imaging device is calibrated by the standard light source, therefore obtaining standard sensitivity gain of the capture mode. A gain ratio of the standard sensitivity gain of the capture mode to the standard sensitivity gain of the preview mode is determined, and is then used to deduce the exposure parameters of the capture mode according to the exposure parameters of the preview mode.
Abstract:
A multi-channel arrayed isosbestic wavelength detection system comprises an arrayed light source board, an arrayed photoelectric sensor board, and an intermediate system frame. The arrayed light source board and arrayed photoelectric sensor board are assembled at opposite sides of the intermediate system frame. In addition, the arrayed light source system has a plurality of light-emitting elements, each of which comprises two monochromatic light sources that provide main wavelength and reference wavelength respectively, and the two wavelengths are isosbestic wavelengths. The arrayed photoelectric sensor system has a plurality of photoelectric sensors, which are aligned at fixed positions in one-to-one correspondence with the light-emitting elements.
Abstract:
A wireless lighting control system comprises a daylight sensor for measuring a light intensity in a space and a dimmer switch for controlling the amount of power delivered to a lighting load in response to the daylight sensor. For example, the daylight sensor may be able to transmit radio-frequency (RF) signals to the dimmer switch. The system provides methods of calibrating the daylight sensor that allow for automatically measuring and/or calculating one or more operational characteristics of the daylight sensor. One method of calibrating the daylight sensor comprises a “single-button-press” calibration procedure during which a user is only required to actuate a calibration button of the daylight sensor once. In addition, the daylight sensor is operable to automatically measure the total light intensity in the space at night to determine the light intensity of only the electrical light generated by the lighting load.
Abstract:
The present invention provides an instrument and method for measuring total luminous flux of luminous elements, which forms an approximately uniform spatial intensity distribution by simultaneously lighting a plurality of luminous elements for measurement in an integrating sphere when comparing a total luminous flux standard lamp with the luminous elements to measure the total luminous flux of the luminous elements, thus not requiring spatial mismatch error correction.
Abstract:
A test system and method are provided for testing in parallel radiant output of multiple light emitting devices. Generally, the method involves: (i) providing a system having a master, calibrated power meter (CPM), a source transfer standard (STS), and multiple secondary, test site power meters (TSPMs); (ii) determining a relationship between electrical power supplied to the STS and a radiant output therefrom as measured by the CPM; (iii) calibrating the TSPMs using the STS and the relationship between the power supplied to the STS and the radiant output therefrom as determined by the CPM; and (iv) positioning the devices undergoing test on a fixture of the test system and positioning the fixture relative to the TSPMs to test radiant outputs of the devices. Preferably, the TSPMs are calibrated by exposing each to the STS at a known power, determining a difference between the radiant output measured by the CPM and TSPM, using this difference as an offset that is added to the a signal from the TSPM to provide a corrected radiant output for the device under test. Other embodiments are also disclosed.
Abstract:
Remote control systems that can distinguish predetermined light sources from stray light sources, e.g., environmental light sources and/or reflections are provided. The predetermined light sources can be disposed in asymmetric substantially linear or two-dimensional patterns. The predetermined light sources also can output waveforms modulated in accordance with one or more signature modulation characteristics. The predetermined light sources also can output light at different signature wavelengths.
Abstract:
A light source of testing a sensor, a test apparatus and a method are disclosed. The test apparatus includes a light source, a photo-mask and a sensor bearing area. The light source includes a plurality of light emitting diodes with parallel connection for emitting a test light. The light source is disposed in a photo-mask. The photo-mask has a diffuser interface. The test light is then diffused to the outside of the photo-mask through the diffuser interface. The sensor bearing area is for bearing the sensor. The sensor bearing area is disposed at the outside of the photo-mask and locates at a position to enable the test light to reach. Therefore, the test light emitted by the light source is used to test the sensor.