Abstract:
A method for energy management in a robotic device includes providing a base station for mating with the robotic device, determining a quantity of energy stored in an energy storage unit of the robotic device, and performing a predetermined task based at least in part on the quantity of energy stored. Also disclosed are systems for emitting avoidance signals to prevent inadvertent contact between the robot and the base station, and systems for emitting homing signals to allow the robotic device to accurately dock with the base station.
Abstract:
It is described a working apparatus for a limited working area, comprising a base station configured to generate a magnetic field and a self-propelling robot. The self-propelling robot comprises means for moving the self-propelling robot in the working area, a gyroscope, a magnetic field sensor and a processing unit configured to control the movement of the self-propelling robot. The processing unit comprises a magnetic field search module configured to move the self-propelling robot so as to search for the set of contiguous magnetic field lines of force inside the working area according to a defined search path, and comprises a magnetic field tracking module configured to move the self-propelling robot to track at least a portion of the set of found contiguous lines of force by means of a plurality of maneuvers of crossing the set of found contiguous lines of force until reaching the base station.
Abstract:
A method includes constructing map information by obtaining information of environment of a target mowing area, generating a 3-D space path along which the robot having mowing equipment mounted thereon is to move in the target mowing area based on the constructed map information, driving the robot so that the robot travels along the 3-D space path in response to an instruction for executing a mowing mode, extracting a ground area and an obstacle for robot driving by extracting information of a 3-D space when traveling along the 3-D space path, adaptively controlling the driving and mowing mode of the robot based on the extracted ground area and obstacle, and terminating the mowing mode when detecting a completion of the mowing for the target mowing area during the mowing mode.
Abstract:
A robot having a signal sensor configured to measure a signal, a motion sensor configured to measure a relative change in pose, a local correlation component configured to correlate the signal with the position and/or orientation of the robot in a local region including the robot's current position, and a localization component configured to apply a filter to estimate the position and optionally the orientation of the robot based at least on a location reported by the motion sensor, a signal detected by the signal sensor, and the signal predicted by the local correlation component. The local correlation component and/or the localization component may take into account rotational variability of the signal sensor and other parameters related to time and pose dependent variability in how the signal and motion sensor perform. Each estimated pose may be used to formulate new or updated navigational or operational instructions for the robot.
Abstract:
An automated, robotic apparatus, system and method, such as a robotic lawnmower apparatus, system and method, and a control system for same. The present invention provides an automated, robotic apparatus, system and method for mowing lawns, and similar outdoor applications, in both residential and commercial applications, such as in order to provide preferred cut grass patterns across one or several different lawns with a single robotic unit.
Abstract:
The present invention relates to a method 400 and a system 100 for controlling a robotic garden tool 202 around a working area 204 in a boundary wire aided system. The system includes the robotic garden tool 202 to perform an operation within the working area 204, which is at least partly defined by a boundary. The boundary separates the working area 204 from a non-working area. The robotic garden tool also includes detecting means for detecting the boundary. Further, the robotic garden tool 202 is adapted to receive a status signal 110 sent from a signal source and the robotic garden tool 202 is configured to stop the operation, when the status signal 110 provides a stopping signal.
Abstract:
In an unmanned autonomous operating system having a station provided with a signal generator for supplying an area signal in electric pulse current to an area wire that defines an operating area, and an unmanned autonomous vehicle having magnetic sensors for detecting a magnetic field generated by the area wire and a microcomputer programmed to recognize the operating area from the detected magnetic field, a selection mechanism is installed at the station that outputs one of area signals from the signal generator in response to a selection of a user, one of the area signals generated from the signal generator is registered, and the operating area is recognized based on the registered area signal.
Abstract:
A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
Abstract:
A robot obstacle detection system including a robot housing which navigates with respect to a surface and a sensor subsystem aimed at the surface for detecting the surface. The sensor subsystem includes an emitter which emits a signal having a field of emission and a photon detector having a field of view which intersects the field of emission at a region. The subsystem detects the presence of an object proximate the mobile robot and determines a value of a signal corresponding to the object. It compares the value to a predetermined value, moves the mobile robot in response to the comparison, and updates the predetermined value upon the occurrence of an event.
Abstract:
A robotic mower boundary sensing system includes a boundary driving circuit on a charging station transmitting an encoded signal on a boundary wire, a boundary sensor on a robotic mower and including an inductor receiving the encoded signal, and a vehicle control unit on the robotic mower receiving the encoded signal from the boundary sensor and decoding the signal and cross correlating the received signal to determine the distance of the boundary sensor from the boundary wire.