Abstract:
Metallic nanoparticles and processes for forming metallic nanoparticles. In one aspect, the invention is to a process for forming nanoparticles comprising the step of heating a solution comprising a first metal precursor and a nucleating agent (e.g., nucleate nanoparticles or a nucleate precursor) in the presence of a base under conditions effective to form the nanoparticles. The first metal precursor preferably comprises a cationic metal species having a low reduction potential. The invention is also to a nanoparticle or plurality of nanoparticles, each nanoparticle comprising a core having a largest dimension less than about 10 nm; and a metal layer substantially surrounding the core and having a largest dimension less than about 200 nm.
Abstract:
In solder paste of the present invention, a first metal powder, a second metal powder, and a third metal powder are dispersed in a flux or a thermosetting resin. The first metal powder includes a first metal material such as Cu, Ag, Au, or Pd that serves as a base metal. A second metal material such as Sn or In that has a melting point lower than that of the first metal material is coated on the surface of the first metal material. The second metal powder is made of a metal material such as Sn or In that has a melting point lower than that of the first metal material. The third metal powder such as a Cu, Ag, Au or Pd powder has an average particle diameter smaller than that of the first metal material and can form compounds with the second metal material and the second metal powder. Accordingly, the likelihood of unreacted components remaining after a heat treatment can be suppressed, and even when a reflow treatment is repeated a plurality of times, a decrease in the bonding strength of solder bonding can be prevented.
Abstract:
An electronic part mounting method, a semiconductor module, and a semiconductor device, which can reduce a mounting area and a device thickness. In an electronic part mounting method for bonding an electrode formed on a substrate and an electrode formed on an electronic part to each other, the method comprises the step of bonding both the electrodes through a metal layer made up of aggregated particles of at least one kind of metal. Then, the metal particles have an average particle size of 1 to 50 nm. Preferably, the metal particles form a metal layer having a thickness of 5 to 100 μm.
Abstract:
It is the object of the present invention to provide a conductive particle which has excellent adhesion between a base particle and a conductive layer, a conductive layer being resistant to breaking, impact resistance being improved, and an anisotropic conductive material using the conductive particle. The prevent invention is a conductive particle, which comprises a base particle and a conductive layer formed on a surface of said base particle, said conductive layer having a non-crystal nickel plating layer in contact with the surface of said base particle and a crystal nickel plating layer, and a proportion of a nickel crystal grain aggregate oriented in a nickel (111) plane derived from an integrated intensity ratio in X-ray diffraction measurement being 80% or more.
Abstract:
Embodiments of the present invention include a conductive particle that includes a conductive nickel/gold (Ni/Au) complex metal layer having a phosphorous content of less than about 1.5 weight percent formed on the surface of a polymer resin particle. Methods of forming the same are also included. A conductive particle with a Ni/Au complex metal layer having less than about 1.5 weight percent of phosphorous may have relatively high conductivity while providing relatively good adhesion of the Ni/Au metal layer to the polymer resin particle.Further embodiments of the present invention provide an anisotropic adhesive composition comprising a conductive particle according to an embodiment of the invention.
Abstract:
A conductive adhesive is formed by mixing a plurality of conductive fillers into a thermosetting resin. The conductive filler includes a core material made of copper-based metal, a coating film made of silver and a plurality of particles made of silver. The coating film is provided on the core material to cover the core material, and the particles are provided on a surface of the coating film. Accordingly, a surface of the core material is prevented from being exposed. The conductive adhesive can be suitably used for bonding two members.
Abstract:
In an electronic device which realizes high-temperature-side solder bonding in temperature-hierarchical bonding, a bonding portion between a semiconductor device and a substrate is formed of metal balls made of Cu, or the like, and compounds formed of metal balls and Sn, and the metal balls are bonded together by the compounds.
Abstract:
A conductive composition layer, conductive particles as a raw material, a conductive composition therefor, a manufacturing method of the conductive composition layer, etc. are provided wherewith heat conductance can be accelerated between electronic devices or electronic devices can be electrically connected. The conductive composition layer is formed by subjecting to heat treatment at a temperature lower than 230° C. a conductive composition comprising conductive particles having a metal base material and a metal coating material thereon as well as a thermosetting resin having a curing temperature that is lower than 230° C. and/or a thermoplastic resin having a melting point that is lower than 230° C.
Abstract:
An anisotropic conductive compound includes an electrically conducting material suspended in a binder. The electrically conducting material includes nickel coated particles having a coating of silver or gold over the nickel coat and/or gold or silver coated nickel particles. In one embodiment, the binder is formed from the reaction product of a catalyst and a compound comprising an aromatic epoxy resin, a dimer fatty acid diglycidyl ester and oxirane. In another embodiment, the binder is formed from the reaction product of a novalac resin, a catalyst and either a heat polymerized aromatic epoxy resin or a phenoxy modified epoxy novalac resin.
Abstract:
An anisotropic conductive compound includes an electrically conducting material suspended in a binder. The electrically conducting material includes nickel coated particles having a coating of silver or gold over the nickel coat and/or gold or silver coated nickel particles. In one embodiment, the binder is formed from the reaction product of a catalyst and a compound comprising an aromatic epoxy resin, a dimer fatty acid diglycidyl ester and oxirane. In another embodiment, the binder is formed from the reaction product of a novalac resin, a catalyst and either a heat polymerized aromatic epoxy resin or a phenoxy modified epoxy novalac resin.