Abstract:
A power module includes a printed circuit board (PCB), a magnetic element, primary and secondary winding circuits and a regulator. The magnetic element is disposed on the PCB and has first to fourth sides. The second side is opposite to the first side, the fourth side is opposite to the third side. The primary winding circuit is disposed on the PCB and positioned in a vicinity of the first or second side. The secondary winding circuit is disposed on the first PCB and positioned in a vicinity of the third or fourth side. The regulator includes a switch disposed on the PCB, and coupled to the primary winding circuit. The at least one switch, the primary winding circuit, and the magnetic element are arranged in a first direction in order. A power device is also disclosed herein.
Abstract:
Wireless interconnects are shown on flexible cables for communication between computing platforms. One example has an integrated circuit chip, a package substrate to carry the integrated circuit chip, the package substrate having conductive connectors to connect the integrated circuit chip to external components, a cable on the package substrate coupled to the integrated circuit chip at one end, a radio chip on the cable coupled to the cable at the other end, the radio chip to modulate data over a carrier and to transmit the modulated data, and a waveguide transition coupled to a dielectric waveguide to receive the transmitted modulated data from the radio and to couple it into the waveguide, the waveguide to carry the modulated data to an external component.
Abstract:
A method and circuit board arrangement for an intrinsically safe portable device includes two or more circuit boards having a frame structure that forms a contiguous boundary around a space between the circuit boards. In the space there are circuit components mounted on both circuit boards, and a connector that connect the two circuit boards. An encapsulant material fills the space bounded by the frame structure between the circuit boards to exclude airborne material from coming into contact with the encapsulated circuit components.
Abstract:
A wiring substrate includes a first wiring structure, a second wiring structure stacked on an upper surface of the first wiring structure, and an outermost insulating layer stacked on a lower surface of the first wiring structure. The outermost insulating layer covers a part of a bottom wiring layer of the wiring layers forming the first wiring structure. The second wiring structure has a wiring density higher than that of the first wiring structure. A volume ratio V1/V2 is from 0.8 to 1.5, where V1 represents the volume of the wiring layers forming the entire second wiring structure, and V2 represents the volume of the bottom wiring layer in the first wiring structure.
Abstract:
A wiring substrate includes a first wiring structure, a second wiring structure stacked on an upper surface of the first wiring structure, and an outermost insulating layer stacked on a lower surface of the first wiring structure. The outermost insulating layer covers a part of a bottom wiring layer of the wiring layers forming the first wiring structure. The second wiring structure has a wiring density higher than that of the first wiring structure. A volume ratio V1/V2 is from 0.8 to 1.5, where V1 represents the volume of the wiring layers forming the entire second wiring structure, and V2 represents the volume of the bottom wiring layer in the first wiring structure.
Abstract:
An integrated circuit in a multi-chip package is provided. The integrated circuit may include adjustable interface circuitry configured to interface with other off-chip components. In particular, the adjustable interface circuitry may include a microbump input-output buffer operable to drive signals off of the integrated circuit and operable to receive signals from other integrated circuits in the multi-chip package via a microbump. The microbump input-output buffer may include output buffers and input buffers. The output buffers may have programmable drive strengths and may each be selectively switched in and out of use depending on the desired application. Each output buffer may include a level shifter, a buffer circuit, and multiple inverter-like circuits each of which can be turned on or off to adjust the drive strength of that output buffer.
Abstract:
In a display device (100), a row of protruding electrodes (115) and a row of protruding electrodes (116) are formed on the connecting surface of a terminal section (112), the row of the protruding electrodes (116) is disposed between the row of the protruding electrodes (115) and a display section (111), one end of a flexible printed board (150) is connected to the row of the protruding electrodes (115), one end of a flexible printed board (160) is connected to the row of the protruding electrodes (116), the row of the protruding electrodes (115) is adjacent to the row of the protruding electrodes (116), and the one end of the flexible printed board (150) and the one end of the flexible printed board (160) are opposed to each other.
Abstract:
A multi-channel memory connection system comprises a circuit board comprising a plurality of memory connectors, at least one of the plurality of memory connectors configured to receive either a memory module or a memory riser, the at least one memory connector having at least two memory channels connected thereto through the circuit board.
Abstract:
In one exemplary embodiment, a system for supplying electrical connectivity to one or more circuit board based devices includes a backplane and at least one module. The backplane includes a mounting surface having a plurality of modular power connectors. The at least one module includes an interface portion, a power connection portion, and a circuit board. The power connection portion is configured to connect with the corresponding one of the plurality of modular power connectors. The circuit board includes a plurality of power-related electrical contacts and a plurality of data-related electrical contacts. At least one of the plurality of power-related electrical contacts is connected with the power connection portion, and at least one of the plurality of data-related electrical contacts is connected with the interface portion. The backplane is configured to connect with a power supply, such that the power supply supplies power to the at least one module through one of the modular power connectors when the at least one module is connected with the corresponding modular power connector.
Abstract:
A power supply module arrangement with an integrated circuit mounted on a bearing unit and a power supply includes an integrated circuit mounted on a bearing unit and a power supply module arrangement that is placed on the combination of bearing unit and integrated circuit. The power supply module arrangement includes a base extending at least partially over the base of the integrated circuit and/or all around the base of the integrated circuit. The power supply module arrangement allows for greater permissible load jumps, greater permissible current change rates and ever tighter tolerances regarding the constancy of the supply voltage.