Abstract:
Disclosed is a manufacturing method of a printed circuit board. The method in accordance with an embodiment of the present invention includes: providing a laminated substrate having an insulator as well as a first metal layer and a second metal layer, which are sequentially laminated on one side of the insulator; processing a via hole in the laminated substrate; forming a seed layer on an inner wall of the via hole and on a surface of the second metal layer; plating an inside of the via hole and the surface of the second metal layer with a conductive material that is different from a material of the second metal layer; etching the seed layer and the conductive material, formed on the second metal layer; etching the second metal layer; and forming a first circuit pattern by selectively etching the first metal layer.
Abstract:
A circuit board and a method for fabricating the same are provided. The circuit board includes a core board, a first bonding layer disposed on the core board, and a first wiring layer disposed on the first bonding layer. The first bonding layer enables the first wiring layer to be bonded to the core layer better, thereby preventing delamination and forming a fine-pitch wiring layer.
Abstract:
A microelectronic assembly and method for fabricating the same are described. In an example, a microelectronic assembly includes a microelectronic device having a surface with one or more areas to receive one or more solder balls, the one or more areas having a surface finish comprising Ni. A solder material comprising Cu, such as flux or paste, is applied to the Ni surface finish and one or more solder balls are coupled to the microelectronic device by a reflow process that forms a solder joint between the one or more solder balls, the solder material comprising Cu, and the one or more areas having a surface finish comprising Ni.
Abstract:
A microelectronic assembly and method for fabricating the same are described. In an example, a microelectronic assembly includes a microelectronic device having a surface with one or more areas to receive one or more solder balls, the one or more areas having a surface finish comprising Ni. A solder material comprising Cu, such as flux or paste, is applied to the Ni surface finish and one or more solder balls are coupled to the microelectronic device by a reflow process that forms a solder joint between the one or more solder balls, the solder material comprising Cu, and the one or more areas having a surface finish comprising Ni.
Abstract:
A method for manufacturing a board with a built-in electronic element, includes providing a support substrate including a support base and a metal foil, forming a protective film made of a metal material on the metal foil of the support substrate, forming a conductive pattern made of a metal material on the protective film by an additive method, placing an electronic element on the support substrate with the conductive pattern such that a surface of the electronic element where a circuit is formed faces the conductive pattern, covering the electronic element with an insulative resin, etching away the metal foil using a first etching solution such that the protective film is not dissolved by the first etching solution or that the protective film has an etching speed which is slower than an etching speed of the metal foil, and electrically connecting terminals of the electronic element and a part of the conductive pattern.
Abstract:
An electroless Cu layer is formed on each side of a packaging substrate containing a core, at least one front metal interconnect layer, and at least one backside metal interconnect layer. A photoresist is applied on both electroless Cu layers and lithographically patterned. First electrolytic Cu portions are formed on exposed surfaces of the electroless Cu layers, followed by formation of electrolytic Ni portions and second electrolytic Cu portions. The electrolytic Ni portions provide enhanced resistance to electromigration, while the second electrolytic Cu portions provide an adhesion layer for a solder mask and serves as an oxidation protection layer. Some of the first electrolytic Cu may be masked by lithographic means to block formation of electrolytic Ni portions and second electrolytic Cu portions thereupon as needed. Optionally, the electrolytic Ni portions may be formed directly on electroless Cu layers.
Abstract:
In conducting wiring by masking the portion other than the portion to be wired of a metallic laminate with a photoresist for plating and subjecting only the portion to be wired to pattern plating, the provision of a noble metal layer made of gold, platinum or the like, or a metallic layer made of a metal having a larger ionization tendency than that of a metal used in the pattern plating on the metallic layer constituting the undercoat of the photoresist for plating enables the peeling of the resist for plating to be prevented and excellent fine wiring to be conducted.
Abstract:
This disclosure relates to a transmission line for high performance radio frequency (RF) applications. One such transmission line can include a bonding layer configured to receive an RF signal, a barrier layer, a diffusion barrier layer, and a conductive layer proximate to the diffusion barrier layer. The diffusion barrier layer can have a thickness that allows a received RF signal to penetrate the diffusion barrier layer to the conductive layer. In certain implementations, the diffusion barrier layer can be nickel. In some of these implementations, the transmission line can include a gold bonding layer, a palladium barrier layer, and a nickel diffusion barrier layer.
Abstract:
An electroconductive substrate, including: a base material; a foundation layer disposed on the base material; a trench formation layer disposed on the foundation layer, and an electroconductive pattern layer including metal plating. A trench including a bottom surface to which the foundation layer is exposed, is formed. The trench is filled with the electroconductive pattern layer. The foundation layer includes a mixed region which is formed from a surface of the foundation layer on the electroconductive pattern layer side towards the inside thereof, and contains metal particles which contain a metal configuring the electroconductive pattern layer, and enter the foundation layer.
Abstract:
A three-dimensional wiring board production method is provided that includes: a preparation step of preparing a resin film (1) having a breaking elongation of 50% or more; a first metal film formation step of forming a first metal film (3) on a surface of the resin film; a pattern formation step of performing patterning on the first metal film to form a desired pattern; a three-dimensional molding step of performing three-dimensional molding by heating and pressurizing the resin film; and a second metal film formation step of forming a second metal film (21) on the first metal film having a pattern formed thereon. In the first metal film formation step, metal is deposited in a particle state to form the first metal film in a porous state.