Abstract:
The laminated body includes a ceramic base member having an insulating property, an intermediate layer including metal or alloy as a main component formed on a surface of the ceramic base member, and a metal film layer (a circuit layer and a cooling fin) formed on a surface of the intermediate layer by accelerating a powder of metal or alloy with a gas and spraying and depositing the powder on the surface of the intermediate layer as the powder is in a solid state.
Abstract:
A circuit material, comprising a conductive metal layer or a dielectric circuit substrate layer and an adhesive layer disposed on the conductive metal layer or the dielectric substrate layer, wherein the adhesive comprises a poly(arylene ether) and a polybutadiene or polyisoprene polymer.
Abstract:
This disclosure relates to a printed circuit board comprising a light-pervious insulation layer, a patterned electrically conductive layer and a light-pervious overlay. The patterned electrically conductive layer includes a first black oxide layer, a copper layer and a second black oxide layer. The copper layer includes two opposite surfaces and a plurality of inner surfaces interconnecting the two opposite surfaces of the copper layer. The first black oxide layer is formed on one of the surfaces, and the second black oxide layer is formed on the other surface and the inner surfaces. The patterned electrically conductive layer is arranged on the light-pervious insulation layer. The light-pervious overlay is arranged on the second black oxide layer. A method for manufacturing the printed circuit board is also provided in this disclosure.
Abstract:
A circuit subassembly, comprising a dielectric layer formed from a dielectric composition comprising, based on the total volume of the composition: about 15 to about 65 volume percent of a dielectric filler; and about 35 to about 85 volume percent of a thermosetting composition comprising: a poly(arylene ether), and a carboxy-functionalized polybutadiene or polyisoprene polymer.
Abstract:
A method for manufacturing a circuit board structure comprising at least one electrical component. The method comprises the steps of fabricating a conductive pattern on the surface of an essentially plane-like layer on the back side of the plane-like layer, and forming an electrical contact between the at least one electrical component and the conductive pattern. The method further comprises the steps of attaching the at least one electrical component to the back side of the plane-like layer after the fabrication of the conductive pattern, molding encapsulation material on the back side of the plane-like layer so that the encapsulation material at least partly encloses the at least one electrical component attached to the back side of the plane-like layer, and forming holes through the conductive pattern at positions where terminals of the at least one electrical component is attached to the back side of the plane-like layer and become positioned when the at least one electrical component is attached to the circuit board structure.
Abstract:
A printed wiring board is manufactured by a method in which a laminate body having a first insulation layer and a conductive film is provided. An alignment mark is formed in the laminate body by removing at least a portion of the conductive film. An electronic component is placed on an adhesive layer provided on the first insulation layer at a position determined based on the alignment mark. After the electronic component is enclosed inside an opening of the second insulation layer, a via hole exposing a terminal of the electronic component is formed at a position determined based on the alignment mark used to determine the position of the electronic component. A via conductor is formed in the via hole, and a conductive layer is formed on the conductive film and patterned to form a conductive circuit connected to the via conductor.
Abstract:
Provided is a method for manufacturing a multilayer wiring board, whereby even if the multilayer wiring board suffers warping or irregularities, thin-film patterns with great uniformity that are to be used as a mask for forming a wiring layer can be obtained in a simple way. A primer-coated metal foil 20 composed of a primer resin layer 21 and a metal layer 22 is placed on a surface of a double-face CCL 10, which is prepared by applying metal layers 12 and 13 onto the surfaces of a support base 11, and the primer-coated metal foil 20 and the double-face CCL 10 are bonded and the primer resin layer 21 is cured. A via Vb is thereafter formed from the metal layer 22 side, and a metal-plate layer 30 is formed on the resulting metal layer 22. After that, the etched down metal-plate layer 30 and the metal layer 22 are patterned, and using the patterned layers as a mask, the primer resin layer 21 is patterned. Using the patterned primer resin layer 21 as a mask, the metal layer 12 of the double-face CCL 10 and the metal-plate layer 30 are patterned to form a wiring pattern.
Abstract:
Provided is a rolled copper foil or electrolytic copper foil for an electronic circuit to be used for forming a circuit by etching, wherein the copper foil comprises a heat resistance layer composed of zinc or zinc alloy or its oxide formed on an etching side of the rolled copper foil or electrolytic copper foil, and a layer of nickel or nickel alloy, which is a metal or alloy with a lower etching rate than copper, formed on the heat resistance layer. This invention aims to prevent sagging caused by the etching, to form a uniform circuit having the intended circuit width, and to shorten the time of forming a circuit by etching as much as possible, when forming a circuit by etching a copper foil of the copper-clad laminate; and also aims to make the thickness of the nickel or nickel alloy layer as thin as possible, to inhibit oxidation when exposed to heat, to prevent tarnish (discoloration) known as “YAKE”, to improve the etching properties in pattern etching, and to prevent the occurrence of short circuits and defects in the circuit width.
Abstract:
The invention provides a two-layer flexible substrate free of surface defects and having excellent etching characteristics and adherence to a resist.The two-layer flexible substrate has a copper layer provided on one or both faces of an insulator film without using an adhesive, wherein the surface roughness (Ra) of the copper layer is 0.10 to 0.25 μm, and wherein the average crystal grain size [of copper] is no greater than 0.8 μm at 1 μm from the insulator film in the cross-section of the copper layer. Preferably, the insulator film is a polyimide film.
Abstract:
A power supply device includes a main unit and a power switching module. The main unit includes a primary circuit board, a transformer including a primary and a secondary coil, a primary-side circuit and a secondary-side circuit. The power switching module includes a separate PCB formed with at least two connection pads and two conductive tracks, and at least one power switching element disposed on the PCB and having two terminals respectively connected to the two connection pads through the two conductive tracks. The power switching module is in the form of a separate PCB that is electrically connected to the primary- or secondary-side circuits through the two connection pads.