Abstract:
An electronic package which includes a substrate having a dielectric layer, a circuitized layer located on one surface of the dielectric and a thermally and electrically conductive layer located on a second surface of the dielectric, this thermally and conductive layer designed for providing enhanced heat removal from the package's semiconductor device. A pedestal element is located on or formed as part of the thermal and electrically conductive layer, and extends through the dielectric and circuitized layers for having the semiconductor device positioned thereon. The semiconductor device is thus in substantially direct thermal communication with the pedestal element and thus the adjacent, thick thermal conductive layer which functions as the package's heat sink. In one embodiment, solder is provided on the pedestal element to interconnect desired portions of the circuitized layer with the pedestal element (e.g., to provide electrical ground). A method of making such an electronic package is also defined herein.
Abstract:
A punch has a planar surface and raised portions extending from the planar surface. First ones of the raised portions may have a height of approximately 3-25 mils. Second ones of the raised portions may have a greater depth than the first raised portions. The punch may be heated and/applied to the planar surface of a substrate which may also be pre-heated and which has properties of becoming deformed when subjected to heat and pressure. The punch produces cavities and grooves in the substrate at the positions of the raised portions. Electrical components may be disposed in the cavities in the substrate and an electrically conductive material may be disposed in the grooves to communicate with the electrical components. The raised portions in the punch may be provided by printed circuit techniques or by matching or by laser techniques. Alternatively, a foil may be disposed on the planar surface of the punch and the raised portions of the punch. When the punch is applied to the substrate, the grooves and cavities are formed and the foil is transferred to the substrate on the planar surface and in the grooves and cavities in the substrate. The portions of the foil on the planar surface of the substrate may then be removed as by printed circuit techniques or machining or laser techniques so that only the portions of the foil in the grooves and the cavities remain. If desired, these portions of the foil may be electrically plated.
Abstract:
A process for forming a contact bump in an electrically conductive contact pad having top and bottom surfaces supported on a dielectric substrate that includes the steps of removing a portion of the substrate underlying the contact pad to form an aperture and expose a portion of the bottom surface of the pad; upwardly deforming the pad by applying force to its exposed bottom surface to form the bump; and filling the aperture behind the bump with a supporting substance.
Abstract:
A contact bump is formed on a sheet of electrically-conductive material by plastically deforming the sheet so as to form a depression at one side of the sheet and a corresponding bump at the opposite side of the sheet. Solid material is placed in the depression, and the sheet of electrically-conductive material is secured at its one side to a support member.
Abstract:
A composite comprises a first metal or alloy component having a thin refractory oxide layer on a first surface thereof. A second metal or alloy component has a second thin refractory oxide on the first surface thereof. Means are provided having a closely matched coefficient of thermal expansion to the first and second metal or alloy components for bonding the first and second thin refractory oxide layers and for electrically insulating the first component from the second component whereby thermal stress between the metal or alloy components and the bonding means is substantially eliminated.
Abstract:
A procelain on steel printed circuit board includes apertures whose edges are rounded. An aperture is formed by first punching or otherwise making an aperture in the uncoated steel of somewhat larger size than desired, then employing a pair of dies, each with rounded shoulders and a center region of smaller area than the aperture. When the board is placed between the dies with the center region of the latter aligned with an aperture, and pressure is applied to the dies, they engage and round the edges of the aperture. The excess displaced material is forced into space between the original peripheral edge of the aperture and the center region of the dies, thereby decreasing the size of the aperture to the desired size and forming a relatively smooth tapered transition region between opposite surfaces of the board and the outer circumference of the aperture of reduced size. The steel is coated with porcelain after the finished apertures are formed.