Abstract:
The present disclosure pertains to a process for preparing a laminate comprising: providing a dried overlay and a base sheet wherein at least one of the dried overlay and the base sheet comprises a resin-impregnated, opaque, cellulose pulp-based sheet; applying a fluorourethane to the dried overlay to form a treated overlay; drying the treated overlay; and laminating the treated overlay to the base sheet. The disclosed process hereby produces a laminate whose outer surface is modified with the fluorourethane and the cleanability, oil repellency, and abrasion resistance of such a laminate is improved.
Abstract:
The disclosure relates to biocompatible components useful for forming compositions for use as medical/surgical synthetic adhesives and sealants. Biocompatible components of the present disclosure may include a polymeric polyol core, which may be treated with a nitroaryl compound to form a nitro ester. The resulting nitro ester groups may be reduced to form amino groups which, in turn, may be treated to form isocyanate groups. The resulting isocyanate may then be reacted with a second component to form adhesive and/or sealant compositions.
Abstract:
Disclosed is a cellulose ester optical film containing cellulose ester, a polymer (a) below and a compound (b) below: (a) a polymer obtained by copolymerization of an ethylenically unsaturated monomer having in the molecule a partial structure represented by formula (1) below with at least one ethylenically unsaturated monomer, and (b) at least one compound selected from the group consisting of a compound represented by formula (2) below and a compound represented by formula (3) below,
Abstract:
The present invention relates to a novel composite structure with enhanced toughness, which incorporates features mimicked from nacre (mother of pearl). The structure can be used in many industrial and clinical applications, including aeronautics (aircraft skin), the defense industry (armor materials); orthopedics and medical devices (tough, biocompatible coatings on prostheses) and micro-electro-mechanical systems (MEMS; increased reliability for critical components).
Abstract:
The invention is a composition comprisinga) one or more prepolymers having on average three or more aliphatic isocyanate groups and further containing alkoxysilane groups; b) one or more aromatic polyisocyanates; c) one or more compounds having at least one heterocyclic ring which hydrolyzes when exposed to moisture to form at least one isocyanate reactive group; d) one or more solvents; and e) one or more amine and/or organometallic polyurethane catalysts; wherein the ratio of aromatic isocyanate groups to aliphatic isocyanate groups in the composition is from about 0.5:1.0 to about 1.5:1.0, preferably about 0.9:1.0 to about 1.5:1.0, and the equivalent ratio of isocyanate groups to isocyanate reactive groups derivable from the one or more compounds having at least one hydrolyzable heterocylic ring is from about 0.8:1.0 to about 5.3:1.0, and most preferably about 1.5:1.0 to about 1.7:1.0.
Abstract:
To provide a heat-peelable pressure-sensitive adhesive sheet which, even when applied to a flexible adherend or extremely small adherend, enables the adherend to be efficiently peeled and recovered therefrom without breakage.The heat-peelable pressure-sensitive adhesive sheet includes a substrate, and arranged on one side thereof in the following order, an intermediate layer having a thickness “A”, and a heat-peelable pressure-sensitive adhesive layer having a thickness “B” and containing heat-expandable microspheres with a largest particle diameter “C”. The parameters A, B, and C satisfy the following conditions: C≦(A+B)≦60 (μm) and 0.25C≦B≦0.8C, and the heat-peelable pressure-sensitive-adhesive layer, when subjected to a heating treatment, shows an adhesive strength of less than 0.1 N/20 mm after the heating treatment. The heat-peelable pressure-sensitive adhesive layer after the heating treatment preferably has an arithmetic mean surface roughness Ra of 5 μm or smaller and a maximum height of the profile Rmax of 25 μm or smaller. The substrate preferably has a glass transition temperature (Tg) of 60° C. or higher and a thickness of 50 μm or smaller.
Abstract:
An object of the present invention is to easily provide an aqueous paint composition which is excellent in the low-temperature curability and can give a coated film that, while retaining a suitable texturability, further combines the water resistance, the marring resistance and the beef tallow staining resistance with good balance. In addition, another object of the present invention is to provide a coated article which is coated with this aqueous paint composition. As a means of achieving these objects, the aqueous paint composition according to the present invention is an aqueous paint composition comprising a water-soluble pure acrylic resin (A) as a binder resin and a polycarbodiimide compound (D) as a crosslinking agent; with the aqueous paint composition being characterized by further comprising acrylic resin beads (E) and urethane resin beads (F), wherein: in terms of solid component, the ratio of the water-soluble pure acrylic resin (A) relative to the binder resin, the ratios of the acrylic resin beads (E) and of the urethane resin beads (F) relative to the total of the binder resin and the crosslinking agent, and the equivalent ratio of the carbodiimide groups of the polycarbodiimide compound (D) relative to the carboxyl groups of the water-soluble pure acrylic resin (A) satisfy their respective specific ranges.
Abstract:
A coated film is provided having a textured film with a top surface and a bottom surface, wherein at least one LAB coated area and at least one uncoated area are on the top surface of a textured film, and the appearance of the coated and uncoated areas on a textured film is visibly uniform and generally provides a coated film that has a surface that has visually indiscernible areas, even when at least one portion of the films is coated with particulate filled LAB, and the remainder of the film is uncoated.
Abstract:
A pressure sensitive adhesive sheet to be used in producing an extremely thin semiconductor chip which is free of breakage and discoloration by a predicing process and a method of use thereof are provided. The pressure sensitive adhesive sheet is used in a method for producing a semiconductor chip, in which the method involves the steps of: forming a groove having depth smaller than thickness of a wafer on a surface of the wafer on which a semiconductor circuit is formed; reducing the thickness of the wafer and finally dividing the wafer into individual chips by grinding a back face of the wafer. The pressure sensitive adhesive sheet contains a rigid substrate, a vibration relaxation layer provided on one face of the rigid substrate and a pressure sensitive adhesive layer provided on the other face of the rigid substrate, in which thickness of the rigid substrate is 10 to 150 μm and Young's modulus thereof is 1000 to 30000 MPa, and thickness of the vibration relaxation layer is 5 to 80 μm and a maximum value of tan δ of dynamic viscoelasticity thereof at −5° C. to 120° C. is 0.5 or more.