Abstract:
A wet process for cleaning biomass is disclosed, comprising: introducing biomass feedstock to a vibrating separator, to generate an overflow stream and an underflow stream, wherein the overflow stream comprises biomass and large grit, and wherein the underflow stream comprises fines and small grit; introducing the overflow stream to a kinetic separator, to generate an intermediate biomass stream and a large-grit stream; introducing the underflow stream and elutriation water to a hydroclone separator, to generate a wet biomass-fines stream and a small-grit stream; separating water contained in the wet biomass-fines stream and recycling it as elutriation water, to generate a biomass fines stream; and combining the biomass fines stream with the intermediate biomass stream, thereby generating clean biomass. An alternative embodiment for a dry process to clean biomass is also disclosed. The clean biomass may be used in a wide variety of biorefining processes.
Abstract:
The present invention provides an automotive tire containing from 0.1 wt % to 50 wt % hydrophobic nanocellulose. Hydrophobic nanocellulose may include lignin-coated nanocellulose and/or a chemically modified surface to increase hydrophobicity. The nanocellulose may include cellulose nanofibrils and/or cellulose nanocrystals. The nanocellulose may be introduced into tire components such as inner liner, body ply, sidewall, beads, apex, belts, treads, cushion gum, and textile fabric. The nanocellulose may be obtained from a biomass-fractionation process utilizing an acid catalyst, a solvent for lignin, and water to generate a lignin-containing nanocellulose precursor, followed by mechanical treatment of the nanocellulose precursor to produce the nanocellulose. For example, the nanocellulose may be obtained from the AVAP® process. The tire may further include one or more additional components derived from lignocellulosic biomass. For example, the tire may contain lignin-derived carbon black, lignin-derived antioxidants, biomass-derived silica. The tire may also contain synthetic polymers derived from biomass sugars.
Abstract:
A method for the production of alcohol and other bioproducts hemicelluloses extracted from biomass prior to thermal conversion of the biomass to energy. The process can be integrated with the host plant process to minimize the energy loss from extracting hemicelluloses. Also disclosed is a Stepwise enzymatic break down of cellulose fibers from a pulping operation which is performed with the redeployment of equipment and vessels contained within typical existing pulp and paper manufacturing mills. The preferred feedstock is highly delignified pulp from acid or alkaline pulping process or from bleaching stage.
Abstract:
This disclosure provides drilling fluids and additives as well as fracturing fluids and additives that contain cellulose nanofibers and/or cellulose nanocrystals. In some embodiments, hydrophobic nanocellulose is provided which can be incorporated into oil-based fluids and additives. These water-based or oil-based fluids and additives may further include lignosulfonates and other biomass-derived components. Also, these water-based or oil-based fluids and additives may further include enzymes. The drilling and fracturing fluids and additives described herein may be produced using the AVAP® process technology to produce a nanocellulose precursor, followed by low-energy refining to produce nanocellulose for incorporation into a variety of drilling and fracturing fluids and additives.
Abstract:
What is disclosed is a biorefining process to co-produce xylitol with ethanol or other products. In some variations, a process for producing ethanol and xylitol from lignocellulosic biomass, comprises: extracting hemicelluloses from lignocellulosic biomass, wherein the hemicelluloses include xylose oligomers and other sugar oligomers; hydrolyzing the xylose oligomers and the other sugar oligomers, using an acid catalyst or enzymes, to generate xylose and other sugar monomers, respectively; fermenting the other sugar monomers to ethanol using a suitable ethanol-producing microorganism; removing at least some of the ethanol (to increase concentration of xylose); fermenting the xylose to xylitol using a suitable xylitol-producing microorganism; and recovering the xylitol at high concentration.
Abstract:
Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers. These polymers may be combined with the nanocellulose to form completely renewable composites.
Abstract:
This invention provides processes to convert biomass into energy-dense biomass for combustion, alone or in combination with another solid fuel. Some embodiments provide processes for producing energy-dense biomass from cellulosic biomass, comprising extracting the feedstock with steam and/or hot water to produce an extract liquor containing hemicellulosic oligomers, dissolved lignin, and cellulose-rich solids; separating the extract liquor, to produce dewatered cellulose-rich solids; hydrolyzing the dewatered cellulose-rich solids, thereby removing a portion of the cellulose, to produce intermediate solids (with higher energy density) and a hydrolysate; drying the intermediate solids to produce energy-dense biomass; and optionally recovering fermentable sugars from the hydrolysate. The energy-dense biomass may be pelletized into biomass pellets, which may have a similar energy density as torrefied pellets from wood. The hemicellulosic oligomers may be further hydrolyzed to produce additional fermentable sugars. The fermentable sugars may be fermented to ethanol or another product.
Abstract:
The GreenBox+ technology is suitable to extract hemicellulose sugars prior to pulping of biomass into pulp products. The revenue obtainable from the sugar stream can significantly improve the economics of a pulp and paper mill. An initial extraction and recovery of sugars is followed by production of a pulp product with similar or better properties. Other co-products such as acetates and furfural are also possible. Some variations provide a process for co-producing pulp and hemicellulosic sugars from biomass, comprising: digesting the biomass in the presence of steam and/or hot water to extract hemicellulose into a liquid phase; washing the extracted solids, thereby generating a liquid wash filtrate and washed solids; separating the liquid wash filtrate from the washed solids; refining the washed solids at a refining pH of about 4 or higher, thereby generating pulp; and hydrolyzing the hemicellulose to generate hemicellulosic fermentable sugars.
Abstract:
This invention provides processes to convert biomass into energy-dense biomass for combustion, alone or in combination with another solid fuel. Some embodiments provide processes for producing fermentable sugars and energy-dense biomass from cellulosic biomass, comprising extracting the feedstock with steam and/or hot water to produce an extract liquor containing hemicellulosic oligomers, dissolved lignin, and cellulose-rich solids; separating the extract liquor, to produce dewatered cellulose-rich solids; hydrolyzing the dewatered cellulose-rich solids, thereby removing a portion of the cellulose, to produce intermediate solids (with higher energy density) and a hydrolysate; drying the intermediate solids to produce energy-dense biomass; and recovering fermentable sugars from the hydrolysate. The energy-dense biomass may be pelletized into biomass pellets, which may have a similar energy density as torrefied pellets from wood. The hemicellulosic oligomers may be further hydrolyzed to produce additional fermentable sugars. The fermentable sugars may be fermented to ethanol or another product.
Abstract:
This invention provides processes and apparatus to convert biomass, including wood and agricultural residues, into low-ash biomass pellets for combustion, alone or in combination with another solid fuel. Some embodiments provide processes for producing hemicellulosic sugars and low-ash biomass from cellulosic biomass, comprising providing an aqueous extraction solution with acetic acid; extracting the feedstock to produce an extract liquor containing soluble ash, hemicellulosic oligomers, acetic acid, dissolved lignin, and cellulose-rich solids; dewatering and drying the cellulose-rich, lignin-rich solids to produce a low-ash biomass; hydrolyzing the hemicellulosic oligomers to produce fermentable hemicellulosic sugars, wherein additional acetic acid is generated; removing a vapor stream comprising vaporized acetic acid from the extract; recycling the vapor or its condensate to provide some starting acetic acid for the extraction solution; and recovering fermentable hemicellulosic sugars. The disclosed processes can produce clean power from biomass. Co-products include fermentation products such as ethanol, fertilizers, and lignin.