Abstract:
This patent describes economical and environment-friendly processes for the synthesis of Al-containing non-Mg anionic clays. It involves hydrothermally reacting a slurry comprising a divalent metals source with a trivalent metals source to directly obtain Al-containing non-Mg anionic clay, at least one of the metal sources being an oxide, hydroxide or a carbonate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products that contain anionic clays.
Abstract:
A continuous process for the synthesis of anionic clays with carbonate and/or hydroxide anions as the charge-balancing interlayer species is disclosed. The process involves reacting a slurry comprising aluminum trihydrate and/or its calcined form, with a magnesium source. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or it can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products.
Abstract:
An economical and environment-friendly process for the synthesis of anionic clays with carbonate and/or hydroxide anions as the charge-balancing interlayer species is disclosed. The process involves reacting a slurry including an aluminum source and a magnesium source, the aluminum source including two types of aluminum-containing compounds, preferably aluminum trihydrate and/or thermally treated calcined aluminum trihydrate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or it can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products.
Abstract:
This invention relates to catalysts containing crystalline alumino-silicate zeolite and hydrothermally treated silica-alumina cogels and the employment of the same as cracking catalysts.
Abstract:
A rare earth exchanged zeolite of the faujasite type in which the equivalent of Na is less than 0.1 and the rare earth is at least 0.9 equivalents per gram atom of aluminum and catalysts including the same.
Abstract:
Catalyst compositions comprising a phosphorous-promoted ZSM-5 component and a silica-containing binder, and methods for making and using same, are disclosed. More specifically, processes for making a catalyst for biomass conversion are provided. The process includes: treating a ZSM-5 zeolite with a phosphorous-containing compound to form a phosphorous-promoted ZSM-5 component; preparing a slurry comprising the phosphorous-promoted ZSM-5 component and a silica-containing binder; and shaping the slurry into shaped bodies. Such catalysts can be used for the thermocatalytic conversion of particulate biomass to liquid products such as bio-oil, resulting in higher bio-oil yields and lower coke than conventional catalysts.
Abstract:
A process is disclosed for preparing fluidizable particles of a biomass/catalyst composite material. The process comprises the steps of (i) providing a particulate, solid biomass material; (ii) forming a composite of the biomass material and a catalytic material; (iii) subjecting the biomass material to a thermal treatment at a torrefaction temperature at or above 200° C., and low enough to avoid significant conversion of the biomass material to liquid conversion products; and (iv) forming fluidizable particles from the biomass material. Step (ii) may be carried out before or after step (iii).
Abstract:
A process for biomass catalytic cracking is described herein. More specifically, the process comprises heating the cellulosic biomass to a conversion temperature in presence of a mixed metal oxide catalyst represented by the formula (X1O).(X2O)a.(X3YbO4), wherein X1, X2 and X3 are alkaline earth elements selected from the group of Mg, Ca, Be, Ba , and mixture thereof, and Y is a metal selected from the group of Al, Mn, Fe, Co, Ni, Cr, Ga, B, La, P and mixture thereof.
Abstract:
A composition of matter is described herein that can be subjected to pyrolysis and converted into a bio-oil. The composition comprises an intimate mixture of a particulate solid biomass material and a carbonaceous material. The carbonaceous material acts as a reducing agent during the pyrolysis reaction. The composition of matter produces bio-oil in a greater yield than prior art processes. The bio-oil is of improved quality, as evidenced by its low TAN value.