Abstract:
An apparatus and method for depositing an aerosol that has an ultrafast pneumatic, shutter. The flow of aerosol through the entire deposition flow path is surrounded by at least one sheath gas, thereby greatly increasing reliability. The distance between the aerosol switching chamber and a reverse gas flow chamber input is minimized to reduce switching time. The distance from the switching chamber to the nozzle exit is also minimized to reduce switching time. The gas flows in the system are configured to maintain a substantially constant pressure in the system, and consequently substantially constant flow rates through the deposition nozzle and exhaust nozzle, to minimize on/off switching times. This enables the system to have a switching time of less than 10 ms.
Abstract:
An apparatus for creating solid or liquid nanoparticles having a nozzle to create a first particle size from a bulk liquid flow that is in fluid communication with a gas flow amplifier comprising an inlet cone connected to and in fluid communication with the inlet of a cylindrical housing; a diffuser connected to and in fluid communication with the outlet of said housing; and said housing comprising at least two rings of ports disposed of along a circumference of the cylindrical housing; and a means to inject compressed gas into the housing through said ports.
Abstract:
A compressed air foam (CAF) mixing device is suitable for use in a CAF system that includes a pressurized source of a water soap mixture and a pressurized air source. The CAF mixing device includes an inlet portion, a venturi portion and a deceleration portion. The venturi portion communicates with the inlet portion and includes a constricted zone which presents a smaller cross sectional area than the inlet portion. The venturi portion opens into the deceleration portion that has a substantially larger cross sectional area than the venturi portion. At least one pressurized air conduit communicates with the pressurized air source and is arranged to be adjacent to the deceleration portion. At least one aperture communicates between the pressurized air conduit and the deceleration portion and introduces high pressure air into the deceleration portion in order to produce a water soap foam (CAF) suitable for firefighting.
Abstract:
The invention relates to an atomizer nozzle (10) with a liquid channel (19) which communicates downstream with an annular mixing chamber (26). A liquid (F) is supplied to the liquid channel (19) via a liquid connection (12). The atomizer nozzle (10) additionally has a gas connection (13) which is connected to a gas line system (28). Pressurized gas (L) is conducted to an outer injection channel (29) and an inner injection channel (34) via the gas line system. Each of the two injection channels (29, 34) opens into the annular mixing chamber (26) at a respective injection point (30, 35). The outer injection point (30) is provided on a radially outer mixing chamber wall, and the inner injection point (35) is provided on a radially inner mixing chamber wall. The inflowing liquid can thus be finely atomized using little pressurized gas (L) in the annular mixing chamber (26) and dispensed downstream of the annular mixing chamber via at least one outlet opening (40) in the form of a spray jet (S).
Abstract:
A two media spray lance and nozzle useful for moistening at least a portion of absorbent material present in a mixer. The nozzle includes a central body with a connecting portion for connecting the nozzle to the two media spray lance for a supply of liquid and gas thereto, and an atomizing portion. The atomizing portion delivers droplets of liquid to the absorbent material present in the mixer to obtain moistened absorbent material.
Abstract:
The present invention relates to a nano fluid electrostatic atomizing controllable jet minimal lubricating for grinding system. A grinding system is provided with a corona charging nozzle, a nozzle body of the corona charging nozzle is connected with a liquid supply system and an air supply system, a high-voltage direct-current electrostatic generator at the lower part of the nozzle body is connected with the cathode of an adjustable high-voltage direct-current power supply, the anode of the adjustable high-voltage direct-current power supply is connected with a workpiece charging device, and the workpiece charging device is attached to the non-machined surface of the workpiece. Nano fluid which used as grinding liquid is fed into the corona charging nozzle through the liquid supply system, meanwhile, the air supply system feeds compressed air into the corona charging nozzle.
Abstract:
Exemplary foam-at-a-distance systems, refill units and foam generators are disclosed herein. An exemplary foam generator includes a body having an inlet for receiving air and an inlet for receiving liquid. The foam generator includes a plurality of baffles located within the body. A plurality of elongated spaces are formed at least in part by the baffles. The elongated spaces have a length that is greater than a width.
Abstract:
Apparatus and method for depositing aerosolized material, wherein an aerosol flow is surrounded and focused by more than one consecutive sheath gas flows. The combined sheath and aerosol flows may consecutively flow through more than one capillary, thereby narrowing the flow further. Linewidths of less than one micron may be achieved.
Abstract:
The present invention involves providing a viscous fluid in a particular format and implementations thereof. In particular, a viscous slave fluid is provided in a particular format, wherein the particular format can be an end result or an intermediate result for the viscous fluid. In the case of an intermediate result, the viscous fluid in the second format may be further processed to a third format. Implementations or applications include supercharged fuel injection systems, methods, and apparatuses for internal combustion, lean-burn oil pre-mixing systems, methods, and apparatuses for liquid fuel combustion, and medical or biomedical devices, systems, and methods.
Abstract:
A drug delivery device mainly has a housing, which can be easily held and operated. The housing has one end formed with an adjustment seat capable of adjusting a range distance, and the other end connected to a gas pressure control source for providing mainstream and substream gas pressures. Disposed in the housing are a drug delivery pressuring tube, an embedded drug-can connecting seat or an external drug-can connecting seat, a replaceable drug-can container and a gas communication tube. According to this design, the minor liquid drug can be controlled, the drug-can can be replaced and the continuous quantitative injection of drug can be made. Also, all damaged or dirty members of the invention may be disassembled, cleaned or replaced.