Abstract:
A method and apparatus for treating water or wastewater for drinking and/or industrial use. The method and apparatus comprises of a plurality of vertically positioned electrodes, which are placed in a treating chamber and wherein the electrodes are interconnected to one another. The positive and negative electrodes are insulated there-between. The polarity of the direct current supply is changeable at regular intervals in order to prevent passivation of the electrodes when reaching an even abrasion. The current can preferably be pulsatory. In order to be able to keep the current density between the electrodes at a desired value, the most efficient possible electrolysis is achieved by means of a minimum total current and wherein the spacing between the electrodes are adjustable.
Abstract:
Contaminants are removed from raw water or discharge water from plants, such as sewerage and industrial plants, by applying direct current through an array of spaced, alternately charged electrodes to eliminate or minimize clogging of the electrodes with precipitated contaminants. Polarity may be switched periodically to assist in eliminating or minimizing clogging. In illustrated embodiments, electrode arrays are contained in housings of dielectric material to form modules, To increase processing capacity, the modules are arranged in parallel arrays. Alternatively, a single module is scaled up for large or industrial applications or scaled down for personal use. Instead of housing the electrode arrays in modules through which liquid passes, the electrode arrays for some batch applications are dipped in the water or aqueous solutions.
Abstract:
An EDI device includes a composite electrode enclosed within the cylinder shell of the device. The EDI inner module preferably has one concentrate center pipe as the electrode in the center axis and at least one layer of anion/cation exchange membranes and a support frame in concentrate/dilute chambers wound around the center pipe. The electrode plate is inside the encircled cylindrical shell (isolating vessel). It is connected to an electrical contact plate located in the shell. Either the anode or cathode can be set in the center pipe, and the other electrode can be set in the vessel or shell lining. The electrical contact plate also contacts an electrical contact reed located on the vessel cover when the cover is connected to the shell. The electrical contact plate provides a reliable conductive bridge between the contact reed and the electrode plate and thus passes DC from the contact reed to the electrode plate. The electrical contact plate can be at least one plate and is preferably shaped to fit against the cylindrical vessel lining. The electrode plate is integrated with the vessel to simplify the whole structure and improve the reliability of the electrical contact.
Abstract:
A replaceable spiral wound membrane element can be inserted and removed from its housing or pressure vessel in one piece for servicing or replacement. The replaceable wound membrane element preferably includes a concentrate pipe connected to spacers and membranes that are wound around the concentrate pipe to form a spiral membrane element. After the replaceable membrane element is placed inside its housing, its dilute spacers are filled with ion exchange resin and the housing is sealed to form an electrodeionization (EDI) module.
Abstract:
An EDI device includes a composite electrode enclosed within the cylinder shell of the device. The EDI inner module preferably has one concentrate center pipe as the electrode in the center axis and at least one layer of anion/cation exchange membranes and a support frame in concentrate/dilute chambers wound around the center pipe. The electrode plate is inside the encircled cylindrical shell (isolating vessel). It is connected to an electrical contact plate located in the shell. Either the anode or cathode can be set in the center pipe, and the other electrode can be set in the vessel or shell lining. The electrical contact plate also contacts an electrical contact reed located on the vessel cover when the cover is connected to the shell. The electrical contact plate provides a reliable conductive bridge between the contact reed and the electrode plate and thus passes DC from the contact reed to the electrode plate. The electrical contact plate can be at least one plate and is preferably shaped to fit against the cylindrical vessel lining. The electrode plate is integrated with the vessel to simplify the whole structure and improve the reliability of the electrical contact.
Abstract:
An electrodeionization apparatus comprising an endblock formed from a resilient material, and method for making the same. The resilient material may include various types of thermoplastic elastomers, such as, styrene block copolymers, copolyesters, plolyurethanes, polyamides, thermoplastic elastomeric olefins, and thermoplastic vulcanizates. The resilient material may have a Shore A hardness of between about 40 and about 90.
Abstract:
Various aspects described herein relate to electrochemical devices, e.g., for separation of one or more target organic or inorganic molecules (e.g., charged or neutral molecules) from solution, and methods of using the same. In particular embodiments, the electrochemical devices and methods described herein involve at least one redox-functionalized electrode, wherein the electrode comprises an immobilized redox-species that is selective toward a target molecule (e.g., charged molecule such as ion or netural molecule). The selectivity is based on a Faradaic/redox-activated chemical interaction (e.g., directional hydrogen binding) between the oxidized state of the redox species and a moiety of the target molecule (e.g., charged molecule such as ion or netural molecule).
Abstract:
A system and method for treating flowing water systems with a plasma discharge to remove or control growth of microbiological species. Components of the water system are protected from being damaged by excess energy from the electrohydraulic treatment. Ozone gas generated by a high voltage generator that powers the plasma discharge is recycled to further treat the water. A gas infusion system may be used to create fine bubbles of ozone, air, or other gases in the water being treated to aid in plasma generation, particularly when the conductivity of the water is high. An electrode mounting assembly maintains a high voltage electrode and ground electrode at a fixed distance from each other to optimize plasma generation. An open support structure for the high voltage generator circuit physically separates spark gap electrodes and resists metal deposits that may disrupt discharge of a high voltage pulse to create the plasma.
Abstract:
A system and method for treating flowing water systems with a plasma discharge to remove or control growth of microbiological species. Components of the water system are protected from being damaged by excess energy from the electrohydraulic treatment. Ozone gas generated by a high voltage generator that powers the plasma discharge is recycled to further treat the water. A gas infusion system may be used to create fine bubbles of ozone, air, or other gases in the water being treated to aid in plasma generation, particularly when the conductivity of the water is high. An electrode mounting assembly maintains a high voltage electrode and ground electrode at a fixed distance from each other to optimize plasma generation. An open support structure for the high voltage generator circuit physically separates spark gap electrodes and resists metal deposits that may disrupt discharge of a high voltage pulse to create the plasma.
Abstract:
A pressure vessel (28) accumulates an aqueous stream at elevated pressure and feeds it through a pressure retaining array of passages (18) in the bottom wall of a modular reaction chamber (14) that operates at atmospheric pressure. Spaced electrodes (16) treat the stream during upward flow to the open top of the chamber, where the treated stream overflows the chamber and falls into an inter-wall volume between the chamber and an outside housing (12), washing foam from the housing and chamber as it exits. A housing cover (54) establishes headspace over the chamber to accommodate the overflow. The entire chamber (14) is removable from the housing (12) by loosening fasteners (39) in the bottom wall (20) and lifting it free, with no impediment due to clogging or corrosion outside the chamber.