Abstract:
The valve train assembly with magnet uses the magnet to collect ferrous metal particles that are in the oil prior to their arrival at the high pressure cavity of the hydraulic lash adjuster. The magnet can be positioned in the low pressure cavity of the hydraulic lash adjuster, in the bore of the hollow rocker arm shaft or in the bore of the hollow push rod.
Abstract:
A deactivating hydraulic valve mechanism includes a hydraulic element assembly disposed within cup within a pin housing slidably disposed within a bore in a body. A transverse bore in the pin housing contains selectively-retractable locking pins that engage a locking feature in the body to selectively lock together the body and the pin housing. A lost motion spring is disposed in a vented annular chamber between the body and the pin housing. An oil passage from an engine gallery to the hydraulic element assembly includes an axial component formed in the cup and bypasses the lost motion chamber. A ring holds the lifter assembly together and also sets mechanical lash. The ring may combine a standard-thickness ring and a shim selected to provided a predetermined amount of mechanical lash in the assembled mechanism to ensure facile engagement and disengagement of the locking pins in the body.
Abstract:
In a variable phased valve lifter of an internal combustion engine, two or more roller lifter are allowed to move along constraining faces of a constraining mechanism in a first direction, and the constraining mechanism is allowed to move freely in a second direction. As the roller lifters move through their parallel arcuate paths, the engaging surface(s) of the roller lifters will engage with the constraining face(s) of the constraining mechanism, and each roller lifter will prevent the other from rotating about its longitudinal axis. The roller lifter is thus prevented from rotating about its longitudinal axis as it moves in arcuate fashion in cooperation with the constraining mechanism.
Abstract:
A diagnostic system for an active fuel management (AFM) solenoid of an internal combustion engine is provided. The system includes: a command module that selectively commands a solenoid signal to energize and de-energize the AFM solenoid, a timer module that activates a timer based on a status of the solenoid signal, and a fault module that selectively diagnoses a fault of the AFM solenoid based on the timer and a knock sensor signal.
Abstract:
A method for operating an engine in a vehicle, the engine having at least a cylinder, the method comprising generating engine braking torque to stop rotation of the engine in a desired range by opening and closing at least an electrically actuated valve of the cylinder more than once during a cycle of the cylinder.
Abstract:
Disclosed is a unique configuration of a rocker arm per se wherein high stress areas thereof are strengthened and a trunion shaft is rotatively mounted on its push rod end and has a threaded push rod end insertion bore, a unique push rod construction per se wherein the upper end thereof is threaded, the combination of this rocker arm and the push rod wherein the upper end of the push rod is threaded into the insertion bore whereby the sudden, rapid, repeated and severe impact forces of the push rod end against the rocker arm are spread throughout the threaded connection and the rocker arm and are thus greatly diminished for each point of force contact between the push rod and the rocker arm, and further the stated combination mounted on an internal combustion engine.
Abstract:
A force-transmitting arrangement (4) for a valve train (1) of an internal-combustion engine (2) with hydraulic valve play compensation device (6) with a hollow cylindrical compensation piston (15) is provided. The compensation piston (15) borders, on one end, a working space (32) of the valve play compensation device (6) and, on the other end, a hydraulic medium reservoir (33), which is used for supplying the working space (32) and which is connected to a hydraulic medium supply (18) of the internal-combustion engine (2). A run-off safety device (22, 22a, 22b) at least partially prevents a hydraulic medium flow from the hydraulic medium reservoir (33) in the direction of the hydraulic medium supply (18). The hydraulic medium reservoir (33) includes an inner storage space (17) enclosed by the compensation piston (15) and at least one outer storage space (31) located outside the compensation piston (15), wherein the run-off safety device (22, 22a, 22b) extends between the hydraulic medium supply (18) and hydraulic medium reservoir (33) into a supply bore (35) arranged in the force-transmitting arrangement (4).
Abstract:
In order to create a variable mechanical valve control for an internal combustion engine having, in particular, an underhead camshaft for adjusting a valve stroke and an opening and closing time, making it possible to achieve a very compact transmission gear between the push rod drive and the intake and exhaust valves, to reduce the number of components required for the transmission gear, and, in addition, to obtain a mechanical, completely variable valve train with an underhead camshaft, it is proposed that an intermediate lever (7) be linked to a tappet push rod (4) by means of an axle (8) in such a way that a slide gate roller (6), which is rotatably mounted on the axle (8) and driven by the camshaft (1), is moved in a slide gate (9), whereby a first contact surface (10) on the intermediate lever (7) is supported in a reinforced manner by means of a spring (5) on an eccentric shaft (11) or on a second contact surface (12) and a lever (16) can be displaced over an operating curve (13), by means of which the gas exchange valves (19) are opened and/or closed, and whereby, in particular on a tappet (3) that is provided on the tappet push rod (4), means are provided for the additional shifting of the phase position of the valve liftings of the gas exchange valves (19) with simultaneous play-free adjustment of the valve stroke and means are provided for additional independently controllable valve stroke opening and closing for each camshaft revolution.
Abstract:
A manifold gasket assembly includes a steel carrier fabricated with a plurality of air intake openings. Rubber material is molded to the carrier body to provide a seal about the openings when the gasket assembly is clamped between a cylinder head and intake manifold. Pushrod guides are provided on the carrier body and are fabricated of a material different than that of the carrier body, namely the same material as that used to form the elastomeric sealing beads.
Abstract:
Apparatus and methods for varying valve lift in an internal combustion engine are disclosed. The apparatus include a rocker arm having an elongate aperture and a shaft configured to pass through the aperture. The height of the shaft with respect to the aperture is variable to effect different rocker arm ratios when in combination with a fixed fulcrum point. When the shaft is located in a lower position with respect to the aperture in the rocker arm, the rocker arm pivots around the rocker arm shaft producing full valve lift. Alternatively, when the rocker arm shaft is positioned at a height above the lower position, an upper surface of the rocker arm becomes engageable to varying degrees with the fixed fulcrum point, allowing the rocker arm to pivot around the fixed fulcrum point, thereby reducing the rocker arm ratio, and corresponding valve lift dependent on the rocker arm shaft position. Corresponding methods are also disclosed.