Abstract:
An optical power monitoring device includes a photodetector disposed in close proximity to the cladding of an optical fiber for measuring Rayleigh scattered light from the core of the optical fiber. To ensure only Rayleigh scattered light is measured, a cladding stripper is provided to remove any cladding light prior taking a reading with the photodetector.
Abstract:
The present invention provides a miniature light sensing assembly comprising a light sensing device, a computing device and a connecting member. The light sensing device comprises a main body having an entrance, a light detecting unit disposed in the main body and receiving light travelling through the entrance, a processing module disposed in the main body and converting the light into a photoelectric signal, a connecting unit disposed on the main body, and a signal transmitting module transmitting the photoelectric signal wirelessly. The connecting member is adapted to couple with the light sensing device through the connecting unit. The photoelectric signal is transmitted from the signal transmitting module to the computing device wirelessly and converted into information required by a user by the computing device.
Abstract:
A UV radiation detector with a replaceable secondary window for that is easily replaced by an end user thereby increasing the accuracy of UV radiation measurements. The UV radiation detector with a replaceable secondary window generally includes a housing having a primary window, a UV radiation sensor within the housing to measure UV radiation passing through the primary window, a secondary window protecting the primary window from the fluid and a retainer member having an outer opening removably connectable to the housing to retain the secondary window. The secondary window can be easily replaced after becoming contaminated.
Abstract:
Electronic devices may be provided with light sensors. Light sensors may be proximity sensors or ambient light sensors. Proximity sensors may include a light-emitting component and a light-sensitive component. The electronic device may include an enclosure formed from housing structures and some or all of a display for the device. The enclosure may include openings such as openings formed from clusters of smaller openings. Each light sensor may receive light through one of the clusters of openings. The light sensor may receive the light directly through the openings or may receive light that passes through the openings and is guided to the light sensor by light guiding structures. The light guiding structures may include fiber optic structures or light-reflecting structures. Fiber optic structures may fill or partially fill the openings. Light reflecting structures may be machined cavities in an internal support structure.
Abstract:
An optical connector includes a circuit board, at least one light emitter, at least one light receiver, a shell, and at least two enhancing pins. The circuit board includes a mounting surface. The at least one light emitter and at least one light receiver are mounted on the mounting surface. The shell covers the at least one light emitter and the at least one light receiver. The at least two enhancing pins passes through the shell and are received in the circuit board to fix the shell on the mounting surface.
Abstract:
An optical package having a removably attachable cover and a body is disclosed. The body comprises a ridge whereas the cover comprises a ridge opposing structure. The cover may be form-fitted onto the body defining therein a compartment for receiving an optical sensor. The optical sensor may receive light from an aperture located on the cover. The cover may be secured onto the body through an interlocking structure. Depending on the application, the optical package may further comprise a radiation source, and/or an additional compartment for the radiation source. The optical package may be suitable for navigation sensors, proximity sensors, ambient optical sensors or any other optical devices.
Abstract:
The invention features devices and methods for collecting and measuring light from external light sources. In general, the devices of the invention feature a light diffusing element, e.g., as a component of a light collector, connected by a light conducting conduit, e.g., a fiber optic cable, to a light measuring device, e.g., a spectrometer. This light diffusing element allows, e.g., for substantially uniform light diffusion across its surface and thus accurate measurements, while permitting the total footprint of the device to remain relatively small and portable. This light diffusing element also allows flexibility in scaling of the device to permit use in a wide range of applications.
Abstract:
A sensor includes an enclosure having a housing and a lower cassette that cooperate to provide a sealed volume in which an optical sensor assembly is enclosed and protected. The optical sensor assembly includes a circuit board with a light source and a light detector. The sensor assembly further includes a light pipe that guides light from the sensor onto a target and a lens guides reflected light from the target onto the light detector. Lower ends of the light pipe and the lens are supported by a recess in the lower cassette. Upper ends of the light pipe and the lens are supported by an upper cassette. The upper cassette is positively located and mounted to the circuit board and received in an internal receptacle in the lower cassette. Mounting the lower cassette to the housing encloses the optical sensor assembly in the proper alignment.
Abstract:
A protective device for an imager which is contained within a housing and in which the imager is aligned with an opening in the housing. The protective device includes a cover which overlies the housing opening and is manually detachably secured to the housing by three or more resilient clips. A plurality of openings are formed through the cover to enable operation of the imager.
Abstract:
A spectroscopic instrument comprising a compartment (2) for housing instrument components (3) and desiccant (4) to protect the instrument components, and a deformable container (5) having at least one wall portion which is movable within the compartment (2) so as to vary the volume of the compartment (2) that is occupied by the deformable container as the container is deformed. The interior of the deformable container (5) is in fluid communication with the surroundings of the instrument, such that a difference in pressure between the compartment and the surroundings tends to cause the deformable container to deform, moving the wall portion.