Abstract:
A reflection type optical sensor that detect a surface condition of a moving body and that is used for an image generation apparatus which forms images on a recording media includes a light-emitting device which has a plurality of light emitter systems including at least two light-emitting members and a light-emitting optical system having a plurality of light-emitting lenses corresponding to a plurality of the light emitter systems and guiding light emitted from the light emitter systems to the moving body and a light-receiving device which has a light receiver system including at least two light-receiving members and a light-receiving optical system having light-receiving lenses corresponding to the at least two light-receiving members and guiding light reflected by the moving body to the light receiver system. The image generation apparatus has further a surface condition judging device in addition to the reflection type optical sensor.
Abstract:
A ring light illuminator with annularly arranged light sources is disclosed. To each light source there corresponds a beam shaper comprising a light collector, a homogenizing means for light from the light source, and an imaging means for imaging an output of the homogenizing means into an area to be illuminated. The homogenizing means in embodiments is a rod, into which light from the light collector is directed. The end of the rod opposite the light collector is imaged by the imaging means into the area to be illuminated.
Abstract:
The invention relates to focusing optics (100) for a biosensor (10) which allow with simple means to accurately image an extended investigation region (13) onto a detector plane (P). To this end, the focusing optics (100) comprises at least two focusing lenslets (LL) that are arranged adjacent to each other such that they image an incident parallel light beam (L2) that is directed along a main optical axis (MOA) onto a common plane (P). The output light beam (L2) that is received by the focusing optics (100) may preferably originate from total internal reflection of a parallel input light beam (L1) at the investigation region (13) of a transparent carrier.
Abstract:
This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
Abstract:
An observation device (1) is provided with: a general observation unit (10) for observing sample cells by observing an entire container (C) containing the cells and a culture solution; and a magnification observation unit (20) for magnifying a region within the container (C) and observing the cells, the general observation unit (10) and the magnification observation unit (20) each individually having lighting for illuminating the cells with light, and an optical system for observing the cells. The general observation unit (10) and the magnification observation unit (20) are thereby each provided with an individual optical system and lighting, making it possible to configure an appropriate observation unit for use both when the cells are observed by observing the entire container (C) and when a part within the container (C) is magnified and the cells are observed.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with an excitation beam generated by a light source. A collimating lens can be disposed along a beam path between the light source and the reaction regions to form bundles of collimated excitation beams, wherein each bundle corresponds to a respective reaction region. Methods of analysis using the optical instrument are also provided.
Abstract:
This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
Abstract:
The invention relates to focusing optics (100) for a biosensor (10) which allow with simple means to accurately image an extended investigation region (13) onto a detector plane (P). To this end, the focusing optics (100) comprises at least two focusing lenslets (LL) that are arranged adjacent to each other such that they image an incident parallel light beam (L2) that is directed along a main optical axis (MOA) onto a common plane (P). The output light beam (L2) that is received by the focusing optics (100) may preferably originate from total internal reflection of a parallel input light beam (L1) at the investigation region (13) of a transparent carrier.
Abstract:
This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
Abstract:
The present invention relates to a method and an apparatus for a fast thermo-optical characterisation of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).