Abstract:
A autonomous and remote control all purpose machine (ARCAPM) having different interchangeable modules that are structured and arranged to perform different tasks is disclosed. A machine includes: a body; a plurality of bays in the body, wherein each bay is configured to receive a respective module; and a power source carried by the body. A respective power connector is in each one of the bays that is configured to provide an electrically conductive path between the power source and a device in a module arranged in one of the bays. The machine includes a propulsion system structured and arranged to move the body over the ground. The machine also includes a control system structured and arranged to control autonomous movement of the machine based on at least one of: proximity sensors, metal detectors, and GPS data.
Abstract:
A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
Abstract:
A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
Abstract:
A moving device and a moving control method thereof are provided. The moving control method comprises the following steps. Firstly, a first magnetic field and a second magnetic field are sensed by a moving device within a moving region. A first magnetic stripe generating the first magnetic field is arranged along an outer border of the moving region, and a second magnetic stripe generating the second magnetic field is arranged along an inner border of the moving region. Then, a motion mode is determined and a corresponding motion is performed by the moving device according to an order in which the first magnetic field and the second magnetic field are sensed.
Abstract:
The present invention refers to a robot, a docking system and a docking method therefor. The docking system comprises a first circuit located in a robot. The first circuit comprises a power storage unit for supplying power to the robot and a first main control unit for controlling the movement of the robot. The docking system further comprises a first group of terminals electrically connected with the first circuit, and a second circuit located in a docking station. The second circuit comprises a power supplying unit. The docking system further comprises a second group of terminals electrically connected with the second circuit. The power storage unit or the power supplying unit provides a detection power. The detection power generates a detection current when it flows across a detection circuit. The detection circuit is constructed by the first circuit and the second circuit through the first group of terminals docking with the second group of terminals. The detection circuit further comprises a current detection unit, and the first main control unit confirms that the first group of terminals dock with the second group of terminals when the detection current is detected by the current detection unit. The robot according to this invention can reliably dock to the docking station without human intervention, which brings extreme convenience to production and life.
Abstract:
A secondary optical system for object navigation in an array of beacons is provided that includes an optical source having at least one optical emitter emitting an optical signal and that is mounted to either the moving object or a beacon of the array of beacons. The moving object in simultaneous radio frequency communication the array of beacons to determine dynamic position of the object. An optical detector is mounted to the other of a moving object or the beacon of the array of beacons and the optical detector receives the optical signal when line of sight exists between the moving object and a beacon of the array of beacons. Electronics are provided for determining the dynamic position of the moving object uses weighting factor that favors the communication and at least two beacons of the array of beacons for which a moving object-beacon optical line of sight exists.
Abstract:
A navigation system for a robotic mower includes a boundary wire defining a boundary of a specified area; a boundary sensor assembly, and a vehicle control unit with a navigation arbitration logic configured to arbitrate a selection between at least a straight propagation mode and an arc propagation mode. The navigation arbitration module is configured to select the arc propagation mode when the sensor assembly indicates that the mower approaches the boundary of the specified area and has a distance from the boundary that is equal to or smaller than a specified turn distance. The boundary sensor assembly generates a sensor signal representative of a measured yaw angle of the mower relative to the boundary wire, and the navigation arbitration logic is configured to generate output information representative of a desired yaw angle dependent on an assumed actual yaw angle.
Abstract:
The disclosure relates to a method for processing a surface by means of a robotic vehicle, wherein the robotic vehicle has a control system in which data concerning the outline of the surface to be processed are stored, wherein locating means are present, which determine the position of the robotic vehicle, in particular in relation to the surface to be processed, and wherein the method comprises the following steps: dividing the surface to be processed into individual segments; classifying each individual segment into a property class; and moving to and processing each individual segment in succession, each individual segment being processed with a processing strategy corresponding to its property class.
Abstract:
A method for communication between a charging station and a robot, via a pair of power lines coupled between a power supply in the charging station and a battery in the robot. In operation, the power supply is sequentially switched between a first voltage level and a second voltage level in accordance with a predetermined signal pattern. The voltage level on the power lines in the robot is monitored and correlated with a specific command to be executed by the robot.
Abstract:
Described herein are technologies pertaining to autonomously docking a mobile robot at a docking station for purposes of recharging batteries of the mobile robot. The mobile robot uses vision-based navigation and a known map of the environment to navigate toward the docking station. Once sufficiently proximate to the docking station, the mobile robot captures infrared images of the docking station, and granularly aligns itself with the docking station based upon the captured infrared images of the docking station. As the robot continues to drive towards the docking station, the robot monitors infrared sensors for infrared beams emitted from the docking station. If the infrared sensors receive the infrared beams, the robot continues to drive forward until the robot successfully docks with the docking station.