Abstract:
The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A discharge device for operation in a gas at a prescribed pressure includes a cathode having a plurality of micro hollows therein, and an anode spaced from the cathode. Each of the micro hollows has dimensions selected to produce a micro hollow discharge at the prescribed pressure. Preferably, each of the micro hollows has a cross-sectional dimension that is on the order of the mean free path of electrons in the gas. Electrical energy is coupled to the cathode and the anode at a voltage and current for producing micro hollow discharges in each of the micro hollows in the cathode. The discharge device may include a discharge chamber for maintaining the prescribed pressure. A dielectric layer may be disposed on the cathode when the spacing between the cathode and the anode is greater than about the mean free path of electrons in the gas. Applications of the discharge device include fluorescent lamps, excimer lamps, flat fluorescent light sources, miniature gas lasers, electron sources and ion sources.
Abstract:
A long life high current density hollow cathode electron beam source for use in various E-beam apparatus which uses an ionizable gas within the hollow cathode. Bombardment of an electron emissive surface within the hollow cathode by energetic gas ions causes electrons to be emitted by secondary emission rather than thermionic emission effects. Once initialized by an external ionization voltage the device is essentially self sustaining and operates near room temperature, rather than at thermionic emission temperatures, and with reduced voltages.
Abstract:
A hollow cathode electrode, particularly useful in fluorescent lamps, comprises an outer metal sleeve, an inner metal sleeve disposed within the outer sleeve and an emissive mix disposed on the inner sleeve. In one embodiment, the inner sleeve is a folded cylinder having a square cross section disposed within a circular cylinder. The object of the present invention is to prevent heat loss from the inner sleeve and to minimize sputtering. The electrode of the present invention may also include a third exterior sleeve surrounding but not contacting the interior sleeve or sleeves.