Abstract:
To provide a manufacturing method of a field emission cathode, which method exerts no adverse effect on element characteristics at the time when etching is performed with an ion beam. A sacrificial layer 4 made of a thermosetting resin is formed on a gate electrode layer 3. An opening section 5 is formed in the sacrificial layer 4 and the gate electrode layer 3 by irradiating a focused ion beam, and a hole section 6 is formed by etching the insulating layer 2 by using the sacrificial layer 4 and the gate electrode layer 3 as a mask. An emitter electrode 8 is formed in the hole section 6, and the emitter material 7 on the sacrificial layer 4 is removed together with the sacrificial layer 4 on the gate electrode layer 3.
Abstract:
Based on designs concerning boron nitride thin-films each including boron nitride crystals in acute-ended shapes excellent in field electron emission properties, and designs of emitters adopting such thin-films, it is aimed at appropriately controlling a distribution state of such crystals to thereby provide an emitter having an excellent efficiency and thus requiring only a lower threshold electric field for electron emission.In a design of a boron nitride thin-film emitter comprising crystals that are each represented by a general formula BN, that each include sp3 bonded boron nitride, sp2 bonded boron nitride, or a mixture thereof, and that each exhibit an acute-ended shape excellent in field electron emission property; there is controlled an angle of a substrate relative to a reaction gas flow upon deposition of the emitter from a vapor phase, thereby controlling a distribution state of the crystals over a surface of the thin-film.
Abstract:
Provided is a charged particle beam apparatus, which can emit a stable electron beam, having high brightness and a narrow energy width. The charged particle beam apparatus comprises a field emission electron source, electrodes for applying an electric field to the field emission electron source, and a vaccume exhaust unit for keeping the pressure around the field emission electron source at 1 10−8 Pa or less. The apparatus is so constituted as to use such one of the electron beams emitted as has an electron-beam-center radiation angle of 1 10−2 str or less, and to use the electric current thereof, the second order differentiation of which is negative or zero with respect to the time, and which reduces at a rate of 10% or less per hour. The charged particle beam apparatus further comprises a heating unit for the field emission electron source, and a detection unit for the electric current of the electron beam. The field emission electron source is repeatedly heated to keep the electric current of the electron beam to be emitted, at a predetermined value or higher.
Abstract:
Field emission devices utilizing capacitive ballasting are described with possible uses in industry. The preferred device utilizes opposing electrodes, each with a dielectric layer and a plurality of conductive islands which serve to exchange electrons, generating an oscillatory current. Ideally these islands are dome-shaped and made of a refractory metal such as tungsten of molybdenum. Through proper use and selection of materials, electrical fields with densities of 1014 A/m2 are capable of being generated.
Abstract:
Described herein is a field ionization and electron impact ionization device consisting of carbon nanotubes with microfabricated integral gates that is capable of producing short pulses of ions.
Abstract:
Field emission devices comprising carbon nanotube mats which have been treated with laser or plasma are provided. Mats are formed from carbon nanotubes, also known as carbon fibrils, which are vermicular carbon deposits having diameters of less than about one micron. The carbon nanotube mats are then subjected to laser or plasma treatment. The treated carbon nanotube mat results in improved field emission performance as either a field emission cathode or as part of a field emission device.
Abstract:
Described herein are improved ion thruster components and ion thrusters made from such components. Further described are methods of making and using the improved ion thruster components and ion thrusters made therefrom. An improved cathode includes an emitter formed from a plurality of vertically aligned carbon nanotubes. An ion thruster can include the improved cathode.
Abstract:
The present invention provides for nanostructures grown on a conducting or insulating substrate, and a method of making the same. The nanostructures grown according to the claimed method are suitable for interconnects and/or as heat dissipators in electronic devices.
Abstract:
High-current density field emission sources using arrays of nanofeatures bundles and methods of manufacturing such field emission sources are provided. Variable field emission performance is provided with the variance in the bundle diameter and the inter-bundle spacing, and optimal geometries for the lithographically patterned arrays were determined. Arrays of 1-μm and 2-μm diameter multi-walled carbon nanotube bundles spaced 5 μm apart (edge-to-edge spacing) were identified as the most optimum combination, routinely producing 1.5 to 1.8 A/cm2 at low electric fields of approximately 4 V/μm, rising to >6 A/cm2 at 20 V/μm over a ˜100-μm-diameter area.
Abstract translation:提供了使用纳米尺寸束阵列的大电流密度场发射源和制造这种场致发射源的方法。 可变场发射性能具有束直径和束间距的变化,并且确定了用于光刻图案阵列的最佳几何形状。 将距离为5微米(边缘到边缘间距)的1μm和2μm直径的多壁碳纳米管束的阵列确定为最佳组合,通常在大约的低电场下产生1.5至1.8A / cm 2 4 V /μm,在直径约100μm的区域,以20 V /μm上升至> 6A / cm2。
Abstract:
A structure includes a substrate and a metallized carbon nano-structure extending from a portion of the substrate. In a method of making a metallized carbon nanostructure, at least one carbon structure formed on a substrate is placed in a furnace. A metallic vapor is applied to the carbon nanostructure at a preselected temperature for a preselected period of time so that a metallized nanostructure