Abstract:
Functional films comprising a thermoplastic resin having formed thereon a coating layer and a process for their production are disclosed. The films have improved properties including improved heat resistance, are inexpensive, and are for general-purpose. They are produced by baking a thin film of a phenol resin, an epoxy resin, a silicone resin, etc., onto a thermoplastic resin substrate and can be utilized for flexible printed circuit base, insulating tapes, etc.
Abstract:
The invention provides a flexible metal-foiled laminate of an insulating base film of a synthetic resin, e.g. polyimide, and a metal, e.g. copper, foil adhesively bonded together and suitable for use as a base plate for printed circuit boards by virtue of the high heat resistance and greatly increased adhesive bonding strength between the base film and the metal foil. The laminate is prepared by use of a silicone-based adhesive and the surface of the base film is, prior to adhesive bonding, subjected to a treatment of exposure to an atmosphere of low temperature plasma generated in a gaseous organosilicon compound such as trimethyl ethoxy silane, optionally, diluted with an inorganic gas such as oxygen.
Abstract:
A stretchable display device comprises a display panel that includes a stretchable substrate where a plurality of emission elements is disposed, wherein the stretchable substrate is stretchable in at least one of a first direction and a second direction perpendicular to the first direction; a printed circuit film that includes a first driving circuit chip generating a drive control signal to be applied to the display panel and a second driving circuit chip receiving image data from outside and transferring the image data to the first driving circuit chip, wherein the printed circuit film is stretchable in at least one of the first direction and the second direction with respect to a stretch direction of the display panel.
Abstract:
There is provided a computer structure comprising a first silicon substrate and a second silicon substrate. Computer circuitry configured to perform computing operations is formed in the first silicon substrate, which has a self-supporting depth and an inner facing surface. A plurality of distributed capacitance units are formed in the second silicon substrate, which has an inner facing surface located in overlap with the inner facing surface of the first substrate and is connected to the first substrate via a set of connectors arranged extending depthwise of the structure between the inner facing surfaces. The inner facing surfaces have matching planar surface dimensions. The second substrate has an outer facing surface on which are arranged a plurality of connector terminals for connecting the computer structure to a supply voltage. The second substrate has a smaller depth than the first substrate.
Abstract:
The disclosure provides a conductive slurry, which includes a conductive paste comprising polar materials and a hydrophobic agent mixed with the conductive paste. The hydrophobic agent includes solvent and hydrophobic particles. The solvent of the hydrophobic agent includes a non-polar material.
Abstract:
A composition for forming a protective coating on an electronic device that is in the form of a non-Newtonian fluid that exhibits both viscous and elastic properties, and that forms at least one coating that is hydrophobic, oleophobic, or oleophilic is disclosed. The viscous and elastic properties associated with the non-Newtonian fluid allows the composition to redistribute after being applied as a coating an electronic device. Methods for protecting an electronic device from liquid contaminants by applying the disclosed composition and electronic devices comprising the composition are also disclosed. An electronic device, such as a printed circuit board, having a film made of the composition is also disclosed.
Abstract:
A printed circuit board includes: a first flexible base member; a first metal line disposed on the first flexible base member; a first plating line disposed on the first metal line and including a first connecting portion, a first interconnection portion extending from the first connecting portion, and a first bending portion extending from the first interconnection portion; a first protective layer covering the first interconnection portion and exposing the first connecting portion and the first bending portion; a connection part disposed on the first bending portion and connected to the first bending portion; a second protective layer extending from a side surface of the connection part; a second plating line disposed on the second protective layer; a second metal line disposed on the second plating line; and a second flexible base member disposed on the second metal line.
Abstract:
A method of manufacturing a test socket includes preparing a printed circuit board (PCB) on which a bonding pad is disposed, bonding a conductive wire on the bonding pad, mounting, on an upper surface of the PCB, a space through which the bonding pad is exposed, mounting, on an upper surface of the space, a base through which the bonding pad is exposed, mounting, on an upper surface of the base, a jig which covers the bonding pad, and injecting a liquid silicone rubber into a jig assembly by using the jig assembly as a mold, the jig assembly including the PCB, the space, the base, and the jig.