Abstract:
Disclosed is a printed circuit board having a buried solder bump, in which a circuit pattern and a solder bump formed on the circuit pattern are buried in an insulating layer, thus improving the degree of matching between the solder bump and the circuit pattern and obviating a need for an additional coining process of the solder bump. A manufacturing method thereof is also provided.
Abstract:
A wiring board including two wiring layers and a flexible core layer is provided. The flexible core layer is disposed between the wiring layers, and the flexible core layer is an insulator. A flexure of the wiring board is between 0 degree and 170 degrees.
Abstract:
A printed circuit board includes a first insulation layer that is formed of a resin material into which fiber cloth is embedded. A second insulation layer is formed of a resin material, and is stacked on a front surface of the first insulation layer on which a heating process has been performed. A conductive land is formed on a front surface of the second insulation layer. A via is provided in a through hole penetrating through the first insulation layer and the second insulation layer. The through hole is filled with a conductive material, and the via is connected to the conductive land.
Abstract:
A substrate structure and the fabrication method thereof are provided herein. The present invention utilizes a laminate as the support of the package process and then removes the laminate after the following package steps so as to obtain a quite smooth surface for using in the internal-plane structure of the circuit board and a stacking structure that can be applied to many different types of the chip package structures.
Abstract:
A manufacturing method of a circuit board is provided. A metal core is provided. A conductive layer is formed on each of some carriers. The carriers and dielectric layers are laminated at both sides of the metal core to form a stacked structure. Each of the dielectric layers is located between the corresponding carrier and the metal core, and a portion of the conductive layer is embedded in the corresponding dielectric layer. Then, the carriers are removed. A blind via and/or a through via are/is formed in the stacked structure to connect the corresponding conductive layer and the metal core and/or connect the conductive layers at both sides of the metal core, wherein the through via penetrates the metal core. The conductive layer on a surface of the dielectric layer is removed.
Abstract:
A flexible substrate comprises a film, a first insulating resin layer on a front face of the film, a second insulating resin layer on a rear face of the film, a front-sided wiring pattern embedded in the first insulating resin layer, and a rear-sided wiring pattern embedded in the second insulating resin layer. A surface of the front-sided wiring pattern is flush with a surface of the first insulating resin layer, and a surface of the rear-sided wiring pattern is flush with a surface of the second insulating resin layer. A part of at least one of the front-sided wiring pattern and the rear-sided wiring pattern is dented toward a part of the other of the at least one of the front-sided wiring pattern and the rear-sided wiring pattern such that a portion of the front-sided wiring pattern and a portion of the rear-sided wiring pattern are jointed to each other to form a junction.
Abstract:
A manufacturing method of a printed circuit board is disclosed. The method may include: forming a circuit pattern on a surface of an insulation layer, made primarily from a thermoplastic resin, such that the circuit pattern protrudes from the surface of the insulation layer, and burying the circuit pattern in the insulation layer by pressing the circuit pattern.
Abstract:
A board having buried patterns is disclosed. The board may include an insulation panel, a first pattern buried in one side of the insulation panel, a second pattern buried in the other side of the insulation panel with a predetermined insulating thickness between the first pattern and the second pattern, and a via which electrically connects the first pattern and the second pattern. The board having buried patterns according to certain embodiments of the invention can have greater rigidity compared to a board having exposed patterns, for the same insulating thickness. Also, a carrier-insulation set having a particular amount of thickness can be utilized to satisfy the thickness requirement in employing an existing roller apparatus intended for thicker boards.
Abstract:
A method for fabricating the hermetic electrical feedthrough. The method comprises providing a ceramic sheet having an upper surface and a lower surface, forming at least one via hole in said ceramic sheet extending from said upper surface to said lower surface, inserting a conductive thickfilm paste into said via hole, laminating the ceramic sheet with paste filled via hole between an upper ceramic sheet and a lower ceramic sheet to form a laminated ceramic substrate, firing the laminated ceramic substrate to a temperature to sinter the laminated ceramic substrate and cause the paste filled via hole to form metalized via and cause the laminated ceramic substrate to form a hermetic seal around said metalized via, and removing the upper ceramic sheet and the lower ceramic sheet material from the fired laminated ceramic substrate to expose an upper and a lower surface of the metalized via.
Abstract:
A method for fabricating the hermetic electrical feedthrough. The method comprises providing a ceramic sheet having an upper surface and a lower surface, forming at least one via hole in said ceramic sheet extending from said upper surface to said lower surface, inserting a conductive thickfilm paste into said via hole, laminating the ceramic sheet with paste filled via hole between an upper ceramic sheet and a lower ceramic sheet to form a laminated ceramic substrate, firing the laminated ceramic substrate to a temperature to sinter the laminated ceramic substrate and cause the paste filled via hole to form metalized via and cause the laminated ceramic substrate to form a hermetic seal around said metalized via, and removing the upper ceramic sheet and the lower ceramic sheet material from the fired laminated ceramic substrate to expose an upper and a lower surface of the metalized via.