Abstract:
A light emitting diode (LED) lighting device includes at least one LED assembly comprising a substrate and two or more LEDs configured to generate light spaced apart along the substrate. A cured structural coating is disposed on at least a portion of the LED assembly, wherein the cured structural coating is configured to maintain the LED assembly in a predetermined shape. The substrate of the LED assembly may comprise an elongated and/or flexible substrate.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
A flexible conductive track arrangement has a pre-flexing condition in which the arrangement is generally planar. Conductive tracks are formed from a metal layer and they are covered above and below by insulator layers. The elongate conductive tracks are generally planar but locally corrugated perpendicularly to the general plane. This enables improved binding performance, for example to form tight windings using the conductive tracks.
Abstract:
An electronic device including a body case which has an accommodating section at least partially in a curved shape, a frame which has a first frame section and a second frame section having a width shorter than a width of the first frame section, and is accommodated in the accommodating section, and a circuit board which is accommodated in the accommodating section so as to be laminated on the frame, and provided so as not to overlap with the second frame section when viewed from a laminated direction of the frame.
Abstract:
A cochlear implant device includes a deformable and stretchable flexible strip composed of a biological compatible material and positioned about a longitudinal axis so as to form a spiral. The implant device has a plurality of conductive strips with electrode windows formed so as to expose a segment of each conductive strip. A density of the electrode windows is sufficient to monitor a distance of the flexible strip from a non-conductive tissue of a patient in a 360 degree field of view about the longitudinal axis. A method of inserting a cochlear implant includes providing a multi-joint robot comprised of a series of actuator units, guiding the multi-joint robot into an inner ear of a patient, monitoring the position of the multi-joint robot relative to a non-conductive portion of the patient; and applying current to the multi joint robot so as to adjust the position of the actuator units.
Abstract:
A rollable display device includes a display panel for displaying an image, a printed circuit board connected to an edge of the display panel, and a roller which the display panel is rolled onto or unrolled from. The roller has a cylindrical shape having an inner space, and the printed circuit board is disposed in the inner space.
Abstract:
A bundled flexible flat circuit cable includes a flexible substrate that forms at least one cluster section having an end forming at least one first connection section and an opposite end forming at least one second connection section. Both the first and second connection sections or one of the first and second connection sections form a stack structure. The flexible substrate can be of a structure of single-sided or double-sided substrate and may additionally include an electromagnetic shielding layer. A bundling structure is provided to bundle the cluster section at a predetermined location to form a bundled structure. The bundling structure can be made of a shielding material, an insulation material, or a combination of shielding material and insulation material.
Abstract:
One embodiment of the present invention provides a highly reliable display device. In particular, a display device to which a signal or a power supply potential can be supplied stably is provided. Further, a bendable display device to which a signal or a power supply potential can be supplied stably is provided. The display device includes, over a flexible substrate, a display portion, a plurality of connection terminals to which a signal from an outside can be input, and a plurality of wirings. One of the plurality of wirings electrically connects one of the plurality of connection terminals to the display portion. The one of the plurality of wirings includes a first portion including a plurality of separate lines and a second portion in which the plurality of lines converge.
Abstract:
A flex circuit including a plurality of layers folded on a first fold line and folded on a second fold line is disclosed. The plurality of layers may include a first conductive layer, an insulating layer adjacent the first conductive layer, and a second conductive layer adjacent the insulating layer. The flex circuit may include a plurality of slits extending through each layer of the plurality of layers, the plurality of slits disposed on the first fold line and the second fold line.