Abstract:
This application discloses a hard disk drive, a head stack assembly, and a printed circuit board configured to include impedance patches on the flex ground plane, the flex power plane, the printed circuit ground plane and/or the printed circuit power plane over or under a connector site in the disk base that conveys access read and write differential signals for the sliders' access of rotating disk surfaces. These impedance patches minimize impedance discontinuities in the read and/or write differential signals through the connector site, which may improve the ability of the hard disk drive to transmit these signals at higher frequencies.
Abstract:
The characteristic impedance of a surface pad is manipulated by reticulating the pad and filling the spaces with a dielectric material, providing an inductive element in the coupling of the surface pad to an underlying ground pad of a ground plane, or a combination of these approaches. In appropriate embodiments, acceptable signal trace routing paths will exist in an embedded signal layer under the ground plane and crossing under the surface pad. Other embodiments are also described and claimed.
Abstract:
A flexible printed circuit board (FPCB) includes a signal layer, upper and lower ground layers, and two dielectric layers. The signal layer includes a differential pair comprising two transmission lines to transmit a pair of differential signals. The dielectric layers are located on and under the signal layer to sandwich the signal layer. The upper ground layer is attached to the dielectric layer on the signal layer, opposite to the signal layer. The lower ground layer is attached to the dielectric layer under the signal layer, opposite to the signal layer. Each ground layer includes a grounded sheet made of conductive material. Two voids are defined in each ground layer and located at opposite sides of the corresponding grounded sheet. Distances between the middle line of the grounded sheet of each ground layer and middle lines of the two transmission lines are equal.
Abstract:
An electromagnetic bandgap structure and a printed circuit board that have a mushroom type structure. The electromagnetic bandgap structure includes a first metal layer; a first dielectric layer, layer-built on the first metal layer; a mushroom type structure having a metal plate layer-built on the first dielectric layer and a via of which one end is connected to the metal plate; a second dielectric layer, layer-built on the metal plate and the first dielectric layer; and a second metal layer, layer-built on the second dielectric layer, wherein the other end of the via is placed in a hole formed on the first metal layer and is connected to the first metal layer through a metal line.
Abstract:
A circuit arrangement has a populated circuit carrier and includes a flat insulation carrier having a top side and a patterned metallization layer on the top side and a first power semiconductor chip arranged on a first section of the metallization layer. The first power semiconductor chip has a first lower chip load terminal electrically conductively connected to the first section. A shunt resistor is arranged on a second section of the metallization layer. The shunt resistor has a lower main terminal electrically conductively connected to the second section. An electrically conductive connection is provided between the first section and the second section. The electrically conductive connection includes a constriction between the first section and the second section so that a current which flows between the first lower chip load terminal and the lower main terminal during operation of the circuit arrangement must pass through the constriction.
Abstract:
A first insulating layer is formed on a suspension body, and a write wiring trace is formed on the first insulating layer. A second insulating layer is formed on the first insulating layer so as to cover the wiring trace. A write wiring trace is formed, above the write wiring trace, on the second insulating layer. A ground trace is formed on one side of the write wiring trace at a distance on the second insulating layer. A third insulating layer is formed on the second insulating layer so as to cover the wiring trace and the ground trace. An opening is formed in a region, below the write wiring trace, of the suspension body.
Abstract:
A wired circuit board assembly sheet has a plurality of wired circuit boards, distinguishing marks for distinguishing defectiveness of the wired circuit boards, and a supporting sheet for supporting the plurality of wired circuit boards and the distinguishing marks. Each of the distinguishing marks has an indication portion for indicating a specified one of the wired circuit boards.
Abstract:
A connection device for high frequency signals includes a printed circuit on one external face of which is printed a transmission line and a coaxial connector surface mounted on the printed circuit on the external face. The invention is of particular use for the transmission of radiofrequency signals in the X band, in particular for frequencies from 9 to 10 GHz. The transmission line is connected to the connector by means of a bump contact belonging to the transmission line to which is attached a central core of the connector. The printed circuit comprises at least one internal ground plane parallel to the external face and contributing to the matching of the transmission line. The invention aims to improve the transparency of the transition between the connector and the transmission line. According to the invention, the internal ground plane is perforated by means of a resist facing the bump contact.
Abstract:
An apparatus for detecting pattern alignment error includes a first conductive pattern disposed over a first insulation member with a power source applied of the first conductive pattern; a second insulation member for covering the first conductive pattern; a second conductive pattern disposed on the second insulation member; a conductive via connected to the second conductive pattern and passing through the second insulation member; and an insulation pattern disposed in the first conductive pattern for detecting an alignment error in response to a position of the conductive via. The apparatus for detecting pattern alignment error can detect the alignment of lower wiring in a device with multi-layer wiring
Abstract:
The present invention provides a printed circuit board including: a circuit pattern formed on a first insulating layer; a via pad disposed on the first insulating layer by being spaced apart from the circuit pattern, formed on a lower surface, where a via hole is formed, to have a cross section larger than that of the via hole, and having concavo-convex patterns; a second insulating layer formed on the via pad where the via hole is not formed and on the circuit pattern; and a copper foil layer formed on the second insulating layer and the via hole, and a method of manufacturing the same.