Abstract:
An electrical connection arrangement includes an IC package, and a PCB having a plurality of receiving holes for receiving a plurality of contacts therein. The contact having a contacting portion engaged with the IC package that seated upon the PCB. A retaining device is provided for securing the IC package onto the PCB. Since there is no socket utilized in the present invention, the total profile of the arrangement and the cost are effectively reduced.
Abstract:
An illumination device comprising a connection carrier (1), at least one light-emitting diode (10), an electrically insulating layer (3) and a fixing device (4) is specified. The connection carrier (1) has a first main area (1a) and a second main area (1b) remote from the first main area. The light-emitting diode (10) is fixed on the first main area (1a) of the connection carrier (1). The electrically insulating layer (3) is fitted to the second main area (1b) of the connection carrier (1) and projects laterally beyond the second main area (1b) of the connection carrier (1). The fixing device (4) is suitable for fixing the illumination device to a mounting area (2a) of a carrier (2), wherein the electrically insulating layer (3) is arranged between the second main area (1b) of the connection carrier (1) and the mounting area (2a) of the carrier (2). Furthermore, the fixing device (4) presses the connection carrier (1) against the mounting area (2a). The pressure exerted in this way is used to effect a fixing of the insulating layer (3) between the second main area (1b) of the connection carrier (1) and the mounting area (2a). The fixing device (4) is connected to an optical element (8), which optically influences the light generated by the light-emitting diode (10) during operation.
Abstract:
A process for assembling a rigid-flex printed circuit board (PCB) is presented. During operation, the process receives rigid-flex PCBs that are to be coupled together, wherein a rigid-flex PCB includes flexible PCBs coupled to rigid PCBs. The process then places the PCBs onto a carrier which is configured to: align the PCBs so that bond regions located on the flexible PCBs overlap with bond regions located on corresponding flexible PCBs, and apply pressure to the overlapped bond regions. The process then sends the carrier through a reflow oven which reflows solder on the PCBs so that the components become mechanically and electrically coupled to the PCBs. The temperature profile generated by the reflow oven and the pressure applied by the carrier cures and sets an anisotropic conductive film located in the bond regions so that the overlapped flexible PCBs become mechanically and electrically coupled together.
Abstract:
In a method for fixing an electrical or an electronic component, particularly a printed-circuit board, in a housing used to accommodate the component, and a fixing element for fixing the component by clamping it in place, the component is fitted with at least one fixing element, which includes an elastically yielding press-on part which, during the clamping in place of the component in the housing, is brought to lie against a part of the housing and is pressed against it while being deformed.
Abstract:
A method for electrically connecting conductive thread (40) at any number of termination locations of a textile material (5) with an termination element preferably formed in a circuit board with the following steps being provided: placing the circuit board in a respectively formed recess of a support plate of a tool with the termination locations (122) of the circuit board (12) facing upwardly; arranging the material (5) on the circuit board (12) such that in the area of the termination locations of the circuit board (12) a termination location of the material (5) which is to be connected is being placed. Fixedly mounting, preferably by clamping the material adjacent to and on a side of the termination locations of the circuit board, preferably stretching the material (5) in longitudinal direction wherein the direction of the extension of the conductive threads. Fixedly clamping the material in an area opposite to the first clamping area and adjacent to the desired termination location. Soldering the blank conductive threads (40) to the termination locations of the circuit board (12).
Abstract:
According to one embodiment, a printed circuit board comprises a printed wiring board, circuit component, reinforcing plate and first and second fixing portion. The printed wiring board includes first and second areas. The first fixing portion is provided on a border line that defines the first and second areas. The first fixing portion can fix the reinforcing plate to both the first and second areas. The second fixing portion comprises a pair of elements arranged symmetrical with respect to the border line.
Abstract:
Provided is a light source assembly that may facilitate the coupling and the replacement of light source units, and may thus reduce the manufacturing time, and a liquid crystal display (LCD) having the same. The light source assembly includes a light source unit, a circuit board, and a supporting plate. The light source unit includes at least one light source chip, a first terminal connected to the light source chip, and a housing accommodating the light source chip therein and having at least one fixing protrusion on one side thereof. The circuit board includes a second terminal that is connected to the first terminal and transmits a driving voltage. The light source unit is mounted on the second terminal. The supporting plate is disposed on the circuit board and includes an opening into which the light source unit is inserted. At least a portion of the housing is fixed to the circuit board through the opening.
Abstract:
The present invention provides a contact for connection with an electronic component. The contact includes: a base part; a supporting part, provided on top of the base part for supporting a lead terminal of the electronic component; and at least two clamp parts, provided on top of the base part so as to be located on respective outer sides of the supporting part. The clamp parts are adapted to sandwich the lead terminal of the electronic component between themselves and the supporting part.
Abstract:
A shielded circuit assembly includes first and second circuit support structure, e.g. circuit boards having electrical or electronic components thereon, flexible connection between the circuit support structures, e.g., a flexible printed circuit (FPC), flat flexible cable (FFC), or other connection, the first and second circuit support structures adapted for positioning in generally overlying spaced apart relation with the flexible connection providing electrical connection therebetween while having floor plans that tend to efficiently conserve space between the circuit support structures, and electromagnetic energy shielding adapted to provide shielding of space between the circuit support structures in such generally overlying spaced apart relation. A method of making a shielded circuit assembly includes folding one printed circuit board that is flexibly attached to another printed circuit board to a generally parallel spaced apart relation and providing shielding of space between the circuit boards.
Abstract:
A tube installation of a backlight module allowing fast and easy assembly and disassembly of tube without depending on a soldering process is comprised of a substrate, multiple tubes and a locating means; a terminal of each tube being provided with a conductor comprised of a first bending portion and a second bending portion with a terminal of the second bending portion serving as a contact portion; the locating means being placed below the substrate for the contact portion to contact the substrate so to secure the tube to where above the substrate.