Abstract:
An electrical connector includes a housing having a mating end and a board end. The housing has a plurality of contact cavities extending along a longitudinal axis between the mating and board ends. A plurality of contacts are received within the contact cavities. The contacts have a mating end and a mounting end, and the contacts have a flexible tail at the mounting end. The tail has a first portion extending along the longitudinal axis and a second portion angled with respect to the first portion with the second portion having a board mounting surface configured to mount to a circuit board. The tail includes a slot open along the board mounting surface.
Abstract:
When manufacturing an electronic component having a flip chip or a surface mount component mounted on a sheet substrate and being covered with a shield cover, the above shield cover is dipped into cream solder and placed on the above sheet substrate after the above cream solder is attached to the peripheral edge sides of the above shield cover, and then the shield cover is fixed to the sheet substrate by reflow process. With such manufacturing, it becomes possible to efficiently fix the shield cover to the sheet substrate. Also, the shield cover can securely be fixed against the bend of the sheet substrate produced during the reflow.
Abstract:
A structure of a light emitting diode is provided. The light emitting diode comprises a light emitting diode die; two conductive frames electronically and respectively connecting to the cathode and anode of the light emitting diode die, and two substrates. Each conductive frame has a fixing hole and each substrate has a protrusive pillar. The upper opening of the fixing hole is broader than the bottom opening. The protrusive pillar is inserted into the fixing hole and the shape of the protrusive pillar is deformed for fitting and binding with the fixing hole.
Abstract:
The invention relates to a first component (12, 13, 31, 36a-36c, 50, 62) intended for being connected to a second component (14, 15, 51, 63a-63c). The first component (12, 13, 31, 36a-36c, 50, 62) comprises at least one recess (16, 17, 32, 37a-37c, 52a-52c, 64a-64c) having at least one opening (19, 20, 34, 35, 54a-54c) which will be filled at least in part by the second component (14, 15, 51, 63a-63c) which latter is in a flowing condition during establishment of the connection, at least in the area of the opening (19, 34, 54a-54c). A reduction in cross-section (18, 33, 38a-38c, 53a-53c, 65a-65c) is provided in the recess (16, 17, 32, 37a-37c, 52a-52c, 64a-64c) that will be back-filled by the second component (14, 15, 51, 63a-63c) during establishment of the connection. The reduction in cross-section (18, 33, 38a-38c, 53a-53c, 65a-65c) is provided in the recess (16, 17, 32, 37a-37c, 52a-52c, 64a-64c) on the side facing the second component (14, 15, 51, 63a-63c).
Abstract:
The invention stabilizes a quality of a laser welding in a terminal in which an outer appearance characteristic is not stabilized, and achieves an improvement of a positioning characteristic at a time of executing the laser welding without generating a cost increase. A hole is formed in a terminal of an integrated circuit sealed by a plastic molding. At a time of welding, a welding operation position is positioned by recognizing the hole in accordance with an image recognition, and a laser welding is executed by irradiating a laser beam to a portion of a terminal and a bus bar positioned near an edge portion of the hole. The hole is preferably formed in a circular shape or a similar shape thereto.
Abstract:
A surface mount electrical connector includes a terminal body having a first elongate member that cooperates with a housing to secure the terminal body to the connector housing. A second elongate member of the terminal body includes a curved portion having an aperture therethrough. The curved portion includes a convex surface that facilitates automated assembly operations, and the aperture helps to overcome surface tension in liquid solder, thereby promoting a secure electrical connection.
Abstract:
A circuit board connector has a housing 10 and terminal fittings (30) mounted in the housing (10). The terminal fittings (30) have board connecting portions (34) drawn out of the housing (10). The board connecting portions (34) are arranged on the surface of a circuit board (K) and connected with conductors on the circuit board (K) by soldering. Notches (36) are formed in lateral edges (37) of the board connecting portions (34) and have upward-sloped surfaces (39) to which solder (H) applied to the conductors adheres. A solder test is conducted by observing from above the adhered state of the solder (H) to the sloped surfaces (39) of the notches (36).
Abstract:
The invention relates to an LED with an improved soldering structure, a method of assembling the LED to a PCB, and an LED assembly manufactured by the method. The LED includes an LED chip and a pair of leads with an end electrically connected the LED chip and the other end to be connected to an external power source, having a hole or a cutout part formed therein. The LED also includes a package body housing a part of the lead in the side of the LED chip, and a transparent lens placed on a surface of the package body in the side of the LED chip, for emitting light laterally. This improves soldering conditions for soldering with the other end of the lead placed on the solder, saving the amount of a solder paste while enhancing bonding strength after soldering.
Abstract:
Cut faces 15a to 15h are formed on the front end faces 13a to 13h of the exposed portions 12a to 12h of respective lead terminals 11a to 11h of a semiconductor device 100, and plating for increasing the solderability is provided on the cut faces 15a to 15h.
Abstract:
A method for providing a PCB (printed circuit board) with a shield can (1) comprising a metal shell with a free rim (5). The method prescribes that the rim (5) of the shield can (1) is provided with an extra amount of solder (8) before the shield can (1) is placed on the PCB. A shield can (1) is also described.