Abstract:
The invention is directed to methods and systems for early detection of viral diseases, and more specifically to systems and methods for early detection of viral diseases that are capable of detecting very low viral loads, such as for example and not limitation, SARS-CoV-2 loads.
Abstract:
An authentication article includes: a substrate including: a first surface; a second surface disposed laterally to the first surface and at a depth below the first surface; and a plurality of indentations including the depth at the second surface of the substrate; and an array disposed on the substrate and including a plurality of analytes, the analytes being disposed in the indentations at a depth below a first surface of the substrate and provided to emit an authentication signature in response to being subjected to a probe stimulus. A process for authenticating the authentication article includes: providing the authentication article; subjecting the analytes to a probe stimulus; acquiring a response from the plurality of analytes in response to being subjected to the probe stimulus; and determining whether the response is the authentication signature to authenticate the, wherein the authentication article is not authenticated if the response is not the authentication signature for the array.
Abstract:
A computer-implemented method included: receiving, by an access manager, a query from a source; communicating the query from the access manager to a translator; translating the query into a next generation access control (NGAC) input; communicating the NGAC input to an NGAC engine, the NGAC engine including access control data; receiving the NGAC input; determining an authorization response; communicating the authorization response to the translator; translating the authorization response into a response statement; communicating the response statement to the access manager; communicating, if the response statement comprises a permitted statement: a permitted query to a database from the access manager, the permitted query comprising a data operation; and performing the data operation on data in the database; and blocking access by the source to data in the database if the response statement comprises a deny statement.
Abstract:
An optical transformer includes: an optomechanical member configured: to receive incident light; and to produce primary light from the incident light including an initial propagation that includes a nonlinear scan; and a lens configured: to receive the primary light from the optomechanical member; to linearize the nonlinear scan; and to produce secondary light including a final propagation that comprises a linear scan, such that the optical transformer is configured to transform the nonlinear scan of the primary light to the linear scan of the secondary light. A process for optically transforming a nonlinear scan includes receiving an incident light by an optical transformer that includes an optomechanical member and a lens; producing a primary light from the incident light that includes an initial propagation having a nonlinear scan; communicating the primary light from to the lens; and producing a secondary light to optically transform the nonlinear scan, the secondary light including a final propagation that comprises a linear scan, based on optically linearizing the initial propagation.
Abstract:
A process for depositing a plurality of layers of iridium on a substrate includes: contacting the substrate with an electrolyte composition including: iridium cations protons; biasing the substrate at a first potential; forming iridium on the substrate at the first potential of the substrate; disposing hydrogen on the substrate; self-terminating the forming of iridium on the substrate in response to increasing a coverage of hydrogen on the substrate; oxidizing hydrogen on the substrate by changing a potential of the substrate from the first potential to a second potential; and changing the potential of the substrate from the second potential to a third potential for forming additional iridium on the substrate to deposit a plurality of layers of iridium on the substrate, such that forming the additional iridium on the substrate occurs at the third potential in response to oxidizing the hydrogen on the substrate at the second potential.
Abstract:
A process for etching includes disposing an activating catalyst on a substrate; providing a vapor composition that includes an etchant oxidizer, an activatable etchant, or a combination thereof; contacting the activating catalyst with the etchant oxidizer; contacting the substrate with the activatable etchant; performing an oxidation-reduction reaction between the substrate, the activatable etchant, and the etchant oxidizer in a presence of the activating catalyst and the vapor composition; forming an etchant product that includes a plurality of atoms from the substrate; and removing the etchant product from the substrate to etch the substrate.
Abstract:
Systems and methods for controlling the temperature of small volumes such as yoctoliter volumes, are described. The systems include one or more plasmonic nanostructures attached at or near a nanopore. Upon excitation of the plasmonic nanostructures, such as for example by exposure to laser light, the nanoparticles are rapidly heated thereby causing a change in the ionic conductance along the nanopore. The temperature change is determined from the ionic conductance. These temperature changes can be used to control rapid thermodynamic changes in molecular analytes as they interact with the nanopore.
Abstract:
A process for etching includes disposing an activating catalyst on a substrate; providing a vapor composition that includes an etchant oxidizer, an activatable etchant, or a combination thereof; contacting the activating catalyst with the etchant oxidizer; contacting the substrate with the activatable etchant; performing an oxidation-reduction reaction between the substrate, the activatable etchant, and the etchant oxidizer in a presence of the activating catalyst and the vapor composition; forming an etchant product that includes a plurality of atoms from the substrate; and removing the etchant product from the substrate to etch the substrate.
Abstract:
A computer-implemented method included: receiving, by an access manager, a query from a source; communicating the query from the access manager to a translator; translating the query into a next generation access control (NGAC) input; communicating the NGAC input to an NGAC engine, the NGAC engine including access control data; receiving the NGAC input; determining an authorization response; communicating the authorization response to the translator; translating the authorization response into a response statement; communicating the response statement to the access manager; communicating, if the response statement comprises a permitted statement: a permitted query to a database from the access manager, the permitted query comprising a data operation; and performing the data operation on data in the database; and blocking access by the source to data in the database if the response statement comprises a deny statement.
Abstract:
A process for fractionating a nanoparticle composition, the process includes combining a first polymer, a second polymer, and a solvent to form a fluid and contacting the nanoparticle composition with the fluid. The nanoparticle composition includes a plurality of first nanoparticles, a plurality of second nanoparticles, and a dispersant disposed on an exterior surface of the first nanoparticles and the second nanoparticles. Fractionating the nanoparticle composition also includes forming a multiphase composition that includes a first phase and a second phase by partitioning the first polymer and the second polymer such that a concentration of the first polymer is greater than a concentration of the second polymer in the first phase, and the concentration of the second polymer is greater than the first polymer in the second phase, wherein the solvent is present in the first phase and the second phase. Additionally, the process includes apportioning the first nanoparticles and the second nanoparticles among the first phase and the second phase to fractionate the nanoparticle composition, based on a relative affinity of the first nanoparticles and the second nanoparticles for the first polymer and the second polymer, wherein the first nanoparticles are present in the first phase and substantially absent in the second phase, and the second nanoparticles are present in the second phase and substantially absent in the first phase.