Abstract:
The invention relates to a polymer-coated packaging material, a method of manufacturing the same, and products, such as a disposable drinking cup, made from the material. The packaging material comprises a fibrous base (1) of paper or board, an innermost polymer layer (2) containing a blend of (i) 10 to 25 wt-% of a low-density polyethylene (LDPE) and (ii) 75 to 90 wt-% of a second polyethylene with a higher melt viscosity, said second polyethylene being selected from linear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE), and an outer layer (3) of more than 90 wt-% of HDPE. An outermost layer (4) of a polymer blend similar to that used for the innermost layer (2) may be provided for heat-sealing. The layers (2, 3 and 4) may be brought and adhered to the fibrous base (1) by coextrusion. To maximize renewability of the materials HDPE and LLDPE as used for the structure are of biologic origin.
Abstract:
The present invention relates to a method for manufacturing thermally stabilized, non-sticky and stretchable fibers, which may be further processed into intermediate carbon fibers and finally also carbon fibers. Uses of said fibers are also disclosed. Also a highly oriented intermediate carbon fiber is disclosed together with a highly oriented carbon fiber.
Abstract:
Methods for producing refined xylan from a biomass solution, including: (i) providing a biomass solution, which comprises xylan; (ii) concentrating or separating said biomass solution to obtain a xylan concentrate comprising xylan and impurities; (iii) washing and/or extracting the xylan concentrate with a solvent to obtain refined xylan and a solvent stream comprising the solvent and impurities; and (iv) collecting the refined xylan.
Abstract:
A method and an arrangement are disclosed for producing an electrically conductive pattern on a surface. Electrically conductive solid particles are transferred onto an area of predetermined form on a surface of a substrate. The electrically conductive solid particles are heated to a temperature that is higher than a characteristic melting point of the electrically conductive solid particles, thus creating a melt. The melt is pressed against the substrate in a nip, wherein a surface temperature of a portion of the nip that comes against the melt is lower than said characteristic melting point.
Abstract:
The invention discloses a method of producing a filler composition to be used in paper or board production, said method comprising providing a suspension comprising calcium hydroxide and performing carbonation of the calcium hydroxide to form precipitated calcium carbonate (PCC). The invention is characterized in that starch and/or carboxy methyl cellulose (CMC) is added to the suspension during said carbonation of calcium hydroxide. The method of the invention enables an increased filler content in paper or paperboard without substantially increasing the dusting tendency or decreasing the strength of the paper or board.
Abstract:
Method for producing a sterilized foam web, wherein the method comprising the steps of preparing a wet foam (1),feeding the wet foam (1) to a head box (2, 11),distributing the wet foam by the head box (2, 11),treating the wet foam (1) with electron beam radiation (3a, 3b, 3c) to immobilize and sterilize the wet foam (1),receiving the electron beam treated foam on a moving wire (4) to form a foam web (6, 13), pressing and the foam web (6, 13),and drying the foam web (6, 13).
Abstract:
A hydrophobically sized fibrous web layer, preparation of a fibrous web or a fiber-based coating, a multilayer board product having at least a middle layer formed of said fibrous web, as well as use of a heat-sensitive surfactant for said methods and products, whereby microfibrillated cellulose (MFC) and hydrophobic size are brought to a foam with water and the heat-sensitive surfactant, the foam is supplied to a forming fabric of a paper or board machine, dewatered by suction of air through the forming fabric, and dried to a web product. Alternatively the foam may be supplied onto a premade fibrous web and dried to form a coating layer. The hydrophilic functionality of the surfactant contained in the web may be destroyed by heating. Pulp of a greater fiber length, such as CTMP, may be included, to provide improved wet and dry tensile strength for the paper and board products.
Abstract:
A substantially dry composite material comprising a nanofibrillated polysaccharide and two or more additives, wherein the composite nanofibrillated polysaccharide is a microfibrillated cellulose and wherein the additives are lime milk and carbon dioxide, wherein the additives are allowed to react with each other and forming a precipitated calcium carbonate on the nanofibrillated polysaccharide, thereby forming a composite product comprising precipitated calcium carbonate and nanofibrillated polysaccharide.
Abstract:
A method for bleaching pulp is provided. In the method at least one tertiary amine compound is introduced into a process stage of bleaching. This process stage is a stage which comprises mixing pulp and a chlorine compound capable of bleaching.
Abstract:
The present invention relates to a conductive carbon powder emanating essentially from lignin, a method for the manufacturing thereof and use thereof. Said powder may emanate from an electrically conductive carbon intermediate product, in turn emanating essentially from lignin Further, uses thereof and compositions comprising said carbon powder are disclosed. Additionally methods for manufacturing said conductive carbon powder, also involving an electrically conductive carbon intermediate product emanating essentially from lignin, are disclosed together with a method for making said compositions.